1
|
Zheng WC, Cheng XY, Tao YH, Mao YS, Lu CP, Lin ZH, Chen J. Assessment of the antimicrobial and immunomodulatory activity of QS-CATH, a promising therapeutic agent isolated from the Chinese spiny frogs (Quasipaa spinosa). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109943. [PMID: 38810897 DOI: 10.1016/j.cbpc.2024.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.
Collapse
Affiliation(s)
- Wei-Cheng Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ecological Forestry Development Center of Suichang County, Lishui 323000, China
| | - Xiao-Yun Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ecological Forestry Development Center of Suichang County, Lishui 323000, China.
| | - Yu-Hui Tao
- Forestry Bureau of Jinyun County, Lishui 321400, China
| | - Yue-Song Mao
- Ecological Forestry Development Center of Suichang County, Lishui 323000, China
| | - Cheng-Pu Lu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Ecology, Lishui University, Lishui 323000, China; Lishui Institute for Ecological Economy Research, Lishui 323000, China.
| |
Collapse
|
2
|
Chen J, Zhang CY, Wang Y, Zhang L, Seah RWX, Ma L, Ding GH. Discovery of Ll-CATH: a novel cathelicidin from the Chong'an Moustache Toad (Leptobrachium liui) with antibacterial and immunomodulatory activity. BMC Vet Res 2024; 20:343. [PMID: 39095814 PMCID: PMC11295328 DOI: 10.1186/s12917-024-04202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cathelicidins are vital antimicrobial peptides expressed in diverse vertebrates, crucial for immunity. Despite being a new field, amphibian cathelicidin research holds promise. RESULTS We isolated the cDNA sequence of the cathelicidin (Ll-CATH) gene from the liver transcriptome of the Chong'an Moustache Toad (Leptobrachium liui). We confirmed the authenticity of the cDNA sequence by rapid amplification of cDNA ends and reverse transcription PCR, and obtained the Ll-CATH amino acid sequence using the Open Reading Frame Finder, an online bioinformatics tool. Its translated protein contained a cathelin domain, signal peptide, and mature peptide, confirmed by amino acid sequence. The comparative analysis showed that the mature peptides were variable between the amphibian species, while the cathelin domain was conserved. The concentration of Ll-CATH protein and the expression of its gene varied in the tissues, with the spleen showing the highest levels. The expression levels of Ll-CATH in different tissues of toads was significantly increased post infection with Aeromonas hydrophila. Chemically synthesized Ll-CATH effectively combated Proteus mirabilis, Staphylococcus epidermidis, Vibrio harveyi, V. parahaemolyticus, and V. vulnificus; disrupted the membrane of V. harveyi, hydrolyzed its DNA. Ll-CATH induced chemotaxis and modulated the expression of pro-inflammatory cytokine genes in RAW264.7 macrophages. CONCLUSIONS This study unveiled the antibacterial and immunomodulatory potential of amphibian cathelicidin, implying its efficacy against infections. Ll-CATH characterization expands our knowledge, emphasizing its in a bacterial infection therapy.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Chi-Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou , Zhejiang, 311121, China
| | - Yu Wang
- Administration Center of Zhejiang Jiulongshan National Nature Reserve, Suichang, Zhejiang, 323300, China
| | - Le Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore, 117558, Singapore
| | - Li Ma
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Huang X, Mao W, Yi Y, Lu Y, Liu F, Deng L. The effects of four paralogous piscidin antimicrobial peptides on the chemotaxis, macrophage respiratory burst, phagocytosis and expression of immune-related genes in orange-spotted grouper (Epinephelus coicodes). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105144. [PMID: 38316232 DOI: 10.1016/j.dci.2024.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa. Piscidins demonstrated their capability to modulate the expression of diverse immune-related genes; however, their precise immunoregulatory functions remain largely unexplored. In this study, we examined the immunomodulatory properties of putative mature peptides derived from four E. coicodes piscidins (ecPis1S, ecPis2S, ecPis3S, and ecPis4S) in head kidney leukocytes (HKLs) or monocytes/macrophages (MO/MΦ)-like cells isolated from E. coicodes. Our data demonstrate that E. coicodes piscidins exhibit immunomodulatory activities supported by multiple lines of evidence. Firstly, all four piscidins displayed chemotactic activities towards HKLs, with the most potent chemotactic activity observed in ecPis2S. Secondly, stimulation with E. coicodes piscidins enhanced respiratory burst and phagocytic activity in MO/MФ-like cells, with ecPis3S showing the highest efficacy in increasing phagocytosis of MO/MΦ-like cells. Thirdly, mRNA expression levels of chemokine receptors, Toll-like receptors, T cell receptors, and proinflammatory cytokines were modulated to varying extents by the four piscidins in E. coicodes HKLs. Overall, our findings indicate that the immunological activities of these four paralogous piscidins from E. coicodes are exhibited in a paralog-specific and concentration-dependent manner, highlighting their distinct and versatile immunomodulatory properties. This study makes a significant contribution to the field of fish AMPs immunology by elucidating the novel mechanisms through which members of the piscidin family exert their immunomodulatory effects. Moreover, it provides valuable insights for further exploration of fish immunomodulating agents.
Collapse
Affiliation(s)
- Xiazi Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Wei Mao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Yubin Lu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Feihong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Chen J, Lin YF, Chen JH, Chen X, Lin ZH. Molecular characterization of cathelicidin in tiger frog (Hoplobatrachus rugulosus): Antimicrobial activity and immunomodulatory activity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109072. [PMID: 33965586 DOI: 10.1016/j.cbpc.2021.109072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Cathelicidins are an important antimicrobial peptide family and are expressed in many different vertebrates. They play an important role in the innate immune system of the host. However, amphibian cathelicidins are poorly understood. In this study, the cDNA of the cathelicidin gene was obtained from the skin transcriptome of tiger frog (Hoplobatrachus rugulosus). The predicted amino acid sequence of tiger frog cathelicidin (HR-CATH) comprises a signal peptide, a cathelin domain, and a mature peptide. The HR-CATH amino acid sequence alignment with other frog cathelicidins showed that the functional mature peptide is highly variable in amphibians, whereas the cathelin domain is conserved. A phylogenetic tree analysis showed that HR-CATH is most closely related to cathelicidin-NV from Nanorana ventripunctata. HR-CATH was chemically synthesized and its in vitro activity was determined. It had high antibacterial activity against Vibrio parahaemolyticus, Staphylococcus aureus, and the pathogenic bacterium Aeromonas hydrophila. HR-CATH damaged the cell membrane integrity of A. hydrophila according to a lactate dehydrogenase release assay and was able to hydrolyze the genomic DNA from A. hydrophila in a dose-dependent manner. Furthermore, in RAW264.7 cells (mouse leukemic monocyte/macrophage cell line), HR-CATH induced chemotaxis and enhanced respiratory burst. Our study shows that amphibian cathelicidin has antimicrobial activity and an immunomodulatory effect on immune cells.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - You-Fu Lin
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jia-Hao Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Xiang Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
7
|
Gu QQ, He SW, Liu LH, Wang GH, Hao DF, Liu HM, Wang CB, Li C, Zhang M, Li NQ. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103995. [PMID: 33412232 DOI: 10.1016/j.dci.2021.103995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shu-Wen He
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Li-Hui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China.
| |
Collapse
|
8
|
Li CH, Chen J, Nie L, Chen J. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zool Res 2021; 41:644-655. [PMID: 33124217 PMCID: PMC7671916 DOI: 10.24272/j.issn.2095-8137.2020.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host's innate immune system. We previously demonstrated that mudskipper ( Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia ( Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1β, and BpTGFβ in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.
Collapse
Affiliation(s)
- Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
9
|
Dai YW, Lu XJ, Jiang R, Lu JF, Yang GJ, Chen J. Hypoxia-inducible factor-1α involved in macrophage regulation in ayu (Plecoglossus altivelis) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110575. [PMID: 33609806 DOI: 10.1016/j.cbpb.2021.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses and is important in controlling a variety of processes in monocytes and macrophages. However, the role of HIF-1α in the teleost immune system remains less known. In this study, we cloned the cDNA sequence of HIF-1α from the ayu (Plecoglossus altivelis, PaHIF-1α). Sequence and phylogenetic tree analysis showed that PaHIF-1α clustered within the fish HIF-1α tree and was closely related to that of Northern pike (Esox lucius). PaHIF-1α was expressed in all tested tissues and expression increased in liver, head kidney, and body kidney upon Vibrio anguillarum infection. PaHIF-1α was found to regulate the expression of cytokines in ayu monocytes/macrophages (MO/MФ). PaHIF-1α mediated hypoxia-induced enhancement of MO/MФ phagocytic and bactericidal activities to enhance host defenses. Compared with the control, intermittent hypoxia further increased the expression of PaHIF-1α mRNA, improved the survival rate, and reduced the bacterial load of V. anguillarum-infected ayu. Therefore, PaHIF-1α may play a predominant role in the modulation of ayu MO/MФ function.
Collapse
Affiliation(s)
- You-Wu Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Two transcription factors PU.1a and PU.1b have different functions in the immune system of teleost ayu. Mol Immunol 2021; 133:1-13. [PMID: 33610121 DOI: 10.1016/j.molimm.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Transcription factor PU.1 is a regulator of macrophage function, however, the specific function of PU.1 in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of two PU.1 genes from ayu (Plecoglossus altivelis; PaPU.1a and PaPU.1b). Sequence comparisons showed that PaPU.1 were most closely related to the PU.1 of rainbow smelt (Osmerus mordax). The PU.1 transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaPU.1a and PaPU.1b proteins were upregulated in MO/MФ, after infection. RNA interference was employed to knockdown PaPU.1a and PaPU.1b to investigate their function in MO/MФ. The expression of inflammatory cytokines was regulated by PaPU.1a, but not PaPU.1b, in ayu MO/MФ upon V. anguillarum infection. Both PaPU.1a and PaPU.1b knockdown lowered the phagocytic activity of MO/MФ. Furthermore, PaPU.1b knockdown attenuated MO/MФ bacterial killing capability. Our results indicate that two PaPU.1 genes differentially modulate the immune response in ayu MO/MФ against bacterial infection.
Collapse
|
11
|
Rump A, Smolander OP, Rüütel Boudinot S, Kanellopoulos JM, Boudinot P. Evolutionary Origin of the P2X7 C-ter Region: Capture of an Ancient Ballast Domain by a P2X4-Like Gene in Ancient Jawed Vertebrates. Front Immunol 2020; 11:113. [PMID: 32117264 PMCID: PMC7016195 DOI: 10.3389/fimmu.2020.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/16/2020] [Indexed: 01/31/2023] Open
Abstract
P2X purinergic receptors are extracellular ATP-gated ion channel receptors present on the cell plasma membrane. P2X receptors have been found in Metazoa, fungi, amoebas, and in plants. In mammals, P2X7 is expressed by a large number of cell types and is involved in inflammation and immunity. Remarkably, P2X7 does not desensitize as other P2X do, a feature linked to a “C-cysteine anchor” intra-cytoplasmic motif encoded by exon 11. Another specific feature of P2X7 is its C-terminal cytoplasmic ballast domain (exon 13) which contains a zinc (Zn) coordinating cysteine motif and a GDP-binding region. To determine the origin of P2X7, we analyzed and compared sequences and protein motifs of the C-terminal intra-cytoplasmic region across all main groups of Metazoa. We identified proteins with typical ballast domains, sharing a remarkably conserved Zn-coordinating cysteine motif. Apart from vertebrates, these ballast domains were not associated with a typical P2X architecture. These results strongly suggest that P2X7 resulted from the fusion of a P2X gene, highly similar to P2X4, with an exon encoding a ballast domain. Our work brings new evidence on the origin of the P2X7 purinergic receptor and identifies the Zn-coordinating cysteine domain as the fundamental feature of the ancient ballast fold.
Collapse
Affiliation(s)
- Airi Rump
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sirje Rüütel Boudinot
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, Jouy en Josas, France
| |
Collapse
|
12
|
Zhou Y, Zhou QJ, Qiao Y, Chen J, Li MY. The host defense peptide β-defensin confers protection against Vibrio anguillarum in ayu, Plecoglossus altivelis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103511. [PMID: 31580833 DOI: 10.1016/j.dci.2019.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
β-defensin is a cationic host defense peptide actively participating in host innate immune response against pathogens. In teleost fish, β-defensin exhibits a diversity in genotypes and functions. Herein, a β-defensin homolog (PaBD) was identified from ayu, Plecoglossus altivelis, showing multiple tissues' upregulation against Vibrio anguillarum challenge. In vivo experiments revealed that intraperitoneal injection of chemically synthesized mature PaBD (mPaBD) increased the survival rate of V. anguillarum-infected ayu, accompanied by reduced bacterial load and decreased tissue mRNA levels of tumor necrosis factor α (PaTNF-α) and interleukin 1β (PaIL-1β). However, in vitro, mPaBD showed weak bactericidal activity against V. anguillarum. Interestingly, mPaBD enhanced phagocytosis, intracellular bacterial killing, and respiratory burst of ayu monocytes/macrophages (MO/MΦ). Moreover, it inhibited mRNA levels of PaIL-1β and PaTNF-α in MO/MФ upon V. anguillarum infection. In conclusion, PaBD protects ayu against V. anguillarum challenge not only through its direct antibacterial ability, but also through its immunomodulation in MO/MΦ.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
13
|
Chen J, Nie L, Chen J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics Antimicrob Proteins 2019; 10:176-185. [PMID: 29151250 DOI: 10.1007/s12602-017-9352-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Zhang X, Ding L, Yu Y, Kong W, Yin Y, Huang Z, Zhang X, Xu Z. The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Front Immunol 2018; 9:2972. [PMID: 30619329 PMCID: PMC6305302 DOI: 10.3389/fimmu.2018.02972] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Teleost skin serves as the first line of defense against invading pathogens, and contain a skin-associated lymphoid tissue (SALT) that elicit gut-like immune responses against antigen stimulation. Moreover, exposed to the water environment and the pathogens therein, teleost skin is also known to be colonized by diverse microbial communities. However, little is known about the interactions between microbiota and the teleost skin mucosal immune system, especially dynamic changes about the interactions under pathogen infection. We hypothesized that dramatic changes of microbial communities and strong mucosal immune response would be present in the skin of aquatic vertebrate under parasite infection. To confirm this hypothesis, we construct an infected model with rainbow trout (Oncorhynchus mykiss), which was experimentally challenged by Ichthyophthirius multifiliis (Ich). H & E staining of trout skin indicates the successful invasion of Ich and shows the morphological changes caused by Ich infection. Critically, increased mRNA expression levels of immune-related genes were detected in trout skin from experimental groups using qRT-PCR, which were further studied by RNA-Seq analysis. Here, through transcriptomics, we detected that complement factors, pro-inflammatory cytokines, and antimicrobial genes were strikingly induced in the skin of infected fish. Moreover, high alpha diversity values of microbiota in trout skin from the experimental groups were discovered. Interestingly, we found that Ich infection led to a decreased abundance of skin commensals and increased colonization of opportunistic bacteria through 16S rRNA pyrosequencing, which were mainly characterized by lose of Proteobacteria and increased intensity of Flavobacteriaceae. To our knowledge, our results suggest for the first time that parasitic infection could inhibit symbionts and offer opportunities for other pathogens' secondary infection in teleost skin.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Weiguang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yaxing Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xuezhen Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Nie L, Zhou QJ, Qiao Y, Chen J. Interplay between the gut microbiota and immune responses of ayu (Plecoglossus altivelis) during Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2017; 68:479-487. [PMID: 28756287 DOI: 10.1016/j.fsi.2017.07.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Gut microbiota plays fundamental roles in protection against pathogen invasion. However, the mechanism and extent of responses of gut microbiota to pathogenic infection are poorly understood. This study investigated the gut bacterial communities and immune responses of ayu (Plecoglossus altivelis) upon exposure to Vibrio anguillarum. The succession of V. anguillarum infection was evidenced by increased expression of immune genes and bacterial loads in ayu tissues, which in turn altered the composition and predicted functions of gut bacterial community. The dynamics of gut bacterial diversity and evenness were temporally stable in control ayu but were reduced in infected subjects, particularly at the late stages of infection. Variations in the gut microbiota were significantly associated with the expression levels of TNF-α (P = 0.019) and IL-1 β (P = 0.013). The profiles of certain gut bacterial taxa were indicative of V. anguillarum infection. Compared with healthy controls, the ayu infected with V. anguillarum possessed less complex, fewer connected, and lower cooperative gut bacterial interspecies interaction, coinciding with significant shifts in keystone species. These findings imply that V. anguillarum infection substantially disrupted the compositions and interspecies interaction of ayu gut bacterial community, thereby altering gut microbial-mediated functions and inducing host immune responses. This study provides an integrated overview on the interaction between the gut microbiota and host immune responses to pathogen infection from an ecological perspective.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qian-Jin Zhou
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Zhang XJ, Wang P, Zhang N, Chen DD, Nie P, Li JL, Zhang YA. B Cell Functions Can Be Modulated by Antimicrobial Peptides in Rainbow Trout Oncorhynchus mykiss: Novel Insights into the Innate Nature of B Cells in Fish. Front Immunol 2017; 8:388. [PMID: 28421080 PMCID: PMC5378723 DOI: 10.3389/fimmu.2017.00388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
B cells in fish were recently proven to have potent innate immune activities like macrophages. This inspired us to further explore the innate nature of B cells in fish. Moreover, antimicrobial peptides (AMPs) are representative molecules of innate immunity, and they can modulate the functions of macrophages. These make fish an appropriate model to study the interactions between B cells and AMPs. Interestingly, the results in this study revealed that the IgM+ and IgT+ B cells of rainbow trout could express multiple AMP genes, including four cathelicidin genes and one β-defensin gene. The expression levels of the cathelicidin genes were obviously higher than that of the β-defensin gene. Further studies revealed that intracellular, extracellular, in vitro, and in vivo stimulations could significantly increase the expression of the cathelicidin genes in trout IgM+ and IgT+ B cells but not the expression of the β-defensin gene, indicating that cathelicidin peptides are the main innate immune effectors of trout B cells. More interestingly, we found that cathelicidin peptides could significantly enhance the phagocytic, intracellular bactericidal, and reactive oxygen species activities of trout IgM+ and IgT+ B cells, a phenomenon previously reported only in macrophages, and these activities might also be mediated by the P2X7 receptor. These results collectively suggest that B cells play multiple roles in the innate immunity of fish, and they provide new evidence for understanding the close relationship between B cells and macrophages in vertebrates.
Collapse
Affiliation(s)
- Xu-Jie Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia-Le Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Rat P, Olivier E, Tanter C, Wakx A, Dutot M. A fast and reproducible cell- and 96-well plate-based method for the evaluation of P2X7 receptor activation using YO-PRO-1 fluorescent dye. J Biol Methods 2017; 4:e64. [PMID: 31453224 PMCID: PMC6708926 DOI: 10.14440/jbm.2017.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
The YO-PRO-1 assay provides a quantitative estimation of P2X7 receptor activation. P2X7 receptor is associated to pathological conditions including infectious, inflammatory, neurological, musculoskeletal disorders, pain and cancer. Most primary cells and cell lines from diverse origin may be used thanks to the ubiquitous distribution of P2X7 receptor. To study the activation of P2X7 receptor by chemicals or biological agents, we established a microplate-based cytometry protocol to accurately and rapidly quantify the activation of P2X7 receptor that leads to the formation of large pores in cell membranes. The YO-PRO-1 assay is based on the ability of cells to incorporate and bind YO-PRO-1 dye to DNA after activation of P2X7 receptor through pore formation. Cells are seeded in 96-well plates and incubated with the compound being tested for the appropriate time. The microplate is then incubated for 10 min with YO-PRO-1 staining solution. After the 10 min staining time, fluorescence signal is read using a microplate reader in 1 min. This procedure is easier and requires less handling steps than flow cytometry. 96-well plate based YO-PRO-1 assay is a reproducible and fast method to study both P2X7 receptor activation by toxic agents at subnecrotic concentrations and P2X7 receptor inhibition by antagonists.
Collapse
Affiliation(s)
- Patrice Rat
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Elodie Olivier
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Soliance-Givaudan, Route de Bazancourt, 51110 Pomacle, France
| | - Caroline Tanter
- Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| | - Anaïs Wakx
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mélody Dutot
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| |
Collapse
|
18
|
Chen J, Chen Q, Lu XJ, Chen J. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2016; 59:66-76. [PMID: 27765699 DOI: 10.1016/j.fsi.2016.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in the host's innate immune system. However, the mechanism by which LEAP-2 modulates/regulates the host defense against pathogens remains largely unknown. In this study, we identified a cDNA sequence encoding LEAP-2 homolog (BpLEAP-2) in the mudskipper, Boleophthalmus pectinirostris. Sequence analysis revealed that BpLEAP-2 belonged to the fish LEAP-2A cluster and that it was closely related to ayu LEAP-2. BpLEAP-2 mRNA was detected in a wide range of tissues, with the highest level of transcripts found in the liver. Upon infection with Edwardsiella tarda, BpLEAP-2 mRNA expression was significantly increased in the liver, kidney, spleen, and gill, but decreased in the intestine. Chemically synthesized BpLEAP-2 mature peptide did not exhibit antibacterial activity against E. tarda in vitro. Intraperitoneal injection of BpLEAP-2 (1.0 or 10.0 μg/g) resulted in significantly improved survival rate and reduced tissue bacterial load in E. tarda-infected mudskippers. In E. tarda-infected fish, BpLEAP-2 (0.1, 1.0, or 10.0 μg/g) eliminated E. tarda-induced tissue mRNA expression of BpTNF-α and BpIL-1β. In monocytes/macrophages (MO/MФ), BpLEAP-2 (1.0 or 10.0 μg/ml) induced chemotaxis, enhanced respiratory burst, and inhibited E. tarda-induced mRNA expression of BpTNF-α and BpIL-1β. At a concentration of 10.0 μg/ml, BpLEAP-2 also significantly enhanced the bacterial killing efficiency of MO/MФ. No significant effect was seen in the phagocytic activity of MO/MФ upon treatment with BpLEAP-2. Our study provides evidence, for the first time, that LEAP-2 exhibited immunomodulatory effects on immune cells, and protected the host from pathogenic infections independent of direct bacterial killing function.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
19
|
D'Este F, Benincasa M, Cannone G, Furlan M, Scarsini M, Volpatti D, Gennaro R, Tossi A, Skerlavaj B, Scocchi M. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. FISH & SHELLFISH IMMUNOLOGY 2016; 59:456-468. [PMID: 27818338 DOI: 10.1016/j.fsi.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant β-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response, activities that play a key role in fish immunity. Collectively, these data point to a role of salmonid cathelicidins as modulators of fish microbicidal mechanisms beyond a salt-sensitive antimicrobial activity, and encourage further studies also in view of potential applications in aquaculture.
Collapse
Affiliation(s)
- Francesca D'Este
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Giuseppe Cannone
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Michela Furlan
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Michele Scarsini
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/a, 33100 Udine, Italy
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Skerlavaj
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
20
|
Chen Q, Chen J, Chen J, Lu XJ. Molecular and functional characterization of liver X receptor in ayu, Plecoglossus altivelis: Regulator of inflammation and efferocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:358-368. [PMID: 27539204 DOI: 10.1016/j.dci.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/14/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
Liver X receptors (LXR) are modulators of metabolic processes and inflammation in mammals as nuclear receptors. However, the precise function of LXR in teleosts remains unclear. Here, we characterized a LXR gene (PaLXR) from ayu, Plecoglossus altivelis. The PaLXR transcript was expressed widely in all tissues studied, and changes in expression were observed in tissues and monocytes/macrophages (MO/MΦ) upon infection with the bacterium Edwardsiella ictaluri. PaLXR activation decreased the mRNA expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-10 upon E. ictaluri infection, while their expression was increased following the knockdown of PaLXR by siRNA. Moreover, E. ictaluri infection induced the apoptosis of ayu neutrophils and PaLXR activation enhanced the internalization of E. ictaluri-infected apoptotic neutrophils by MO/MΦ (efferocytosis), while PaLXR knockdown led to decreased efferocytosis. Furthermore, PaLXR activation inhibited intracellular bacterial survival during efferocytosis, while PaLXR knockdown enhanced survival. In conclusion, our results indicate that PaLXR plays a role in the modulation of innate immune responses in ayu MO/MФ.
Collapse
Affiliation(s)
- Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China.
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Yang J, Lu XJ, Chai FC, Chen J. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker ( Larimichthys crocea). Zool Res 2016; 37:347-355. [PMID: 28105799 PMCID: PMC5359322 DOI: 10.13918/j.issn.2095-8137.2016.6.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/04/2022] Open
Abstract
The piscidin family, which includes potent antimicrobial peptides with broad-spectrum activity, plays an important role in the innate immune system of fish. In this study, we cloned piscidin-5-like type 3 (Lcpis5lt3) in large yellow croaker (Larimichthys crocea). Multiple alignments with other known piscidins revealed amino acid conservation throughout the fish, especially at the signal peptide (22 amino acids). The phylogenetic tree confirmed that Lcpis5lt3 and large yellow croaker piscidin-5-like proteins were grouped together to form a branch. Quantitative real-time PCR revealed that Lcpis5lt3 was expressed in a wide range of tissues, including the brain, muscle, gill, head kidney, intestine, kidney, liver, and spleen. The highest mRNA expression level of Lcpis5lt3 was found in the spleen. After Vibrio alginolyticus infection, mRNA expression was rapidly upregulated in the liver, head kidney, gill, kidney, and intestine at 4, 8, 12, and 24 h post infection (hpi), whereas there were no significant changes in the spleen. The antimicrobial spectrum showed that the synthetic mature peptide of Lcpis5lt3 exhibited different activity in vitro against various bacteria, such as Aeromonas hydrophila, V. anguillarum, V. alginolyticus, V. parahaemolyticus, Staphylococcus aureus, and Listeria monocytogenes. In addition, survival rates from the in vivo assay indicated that the synthetic peptide of Lcpis5lt3 increased the survival rate of large yellow croaker after V. alginolyticus challenge, resulting in a decline in bacterial burden and mRNA expression levels of interleukin-1β, interleukin-10, and tumor necrosis factor-α. These data suggest that Lcpis5lt3 plays an important role in innate immunity in large yellow croaker and might represent a potential therapeutic agent against pathogen invasion.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fang-Chao Chai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
22
|
Yang ZJ, Li CH, Chen J, Zhang H, Li MY, Chen J. Molecular characterization of an interleukin-4/13B homolog in grass carp (Ctenopharyngodon idella) and its role in fish against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2016; 57:136-147. [PMID: 27546554 DOI: 10.1016/j.fsi.2016.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Mammalian interleukin 4 (IL-4) and interleukin 13 (IL-13) molecules are anti-inflammatory cytokines mediating the alternative activation of macrophages. However, the role of fish IL-4/13 homologs in monocytes/macrophages (MO/MФ) polarization remains unclear. In this study, we have functionally identified an IL-4/13B homolog in grass carp (Ctenopharyngodon idella), which is termed as CiIL-4/13B. Multiple alignment showed that CiIL-4/13B shared the typical characteristics and structure with other known fish IL-4/13. Phylogenetic analysis showed that CiIL-4/13B is evolutionarily closely related to zebrafish (Danio rerio) and common carp (Cyprinus carpio) IL-4/13B. CiIL-4/13B mRNA was constitutively expressed in tissues and peripheral blood lymphocytes (PBLs) examined, with its highest expression seen in PBLs. Following Aeromonas hydrophila infection, CiIL-4/13B mRNA expression was upregulated. Recombinant CiIL-4/13B (rCiIL-4/13B) was overexpressed in Escherichia coli and purified for a functional study. Using prepared anti-rCiIL-4/13B antiserum, Western blot analysis showed that native CiIL-4/13B in grass carp plasma is N-glycosylated. Intraperitoneal injection of bioactive rCiIL-4/13B significantly increased the survival rate of grass carp against A. hydrophila, and decreased the tissue bacterial load, with a higher dose having better effects. Bioactive rCiIL-4/13B treatment decreased nitrite production and mRNA expression of proinflammatory cytokines (IL-1β and TNF-α), while it increased arginase activity and mRNA expression of anti-inflammatory cytokines (TGF-β and IL-10). The phagocytosis by grass carp MO/MФ had no significant changes by the 8 h treatment of bioactive rCiIL-4/13B compared to that of the negative control, while it was significantly inhibited by the 24 h treatment of bioactive rCiIL-4/13B. The inhibitory effect of rCiIL-4/13B on MO/MФ phagocytosis may be a consequence of MO/MФ proliferation. In summary, our results suggest that CiIL-4/13B plays a protective effect in grass carp against A. hydrophila by inducing alternatively activated MO/MФ.
Collapse
Affiliation(s)
- Zhi-Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
23
|
Chen SX, Ma HL, Shi YH, Li MY, Chen J. Molecular and functional characterization of a novel CD302 gene from ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2016; 55:140-148. [PMID: 27235369 DOI: 10.1016/j.fsi.2016.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Recognizing the presence of invading pathogens by pattern recognition receptors (PRRs) is key to mounting an effective innate immune response. Mammalian CD302 is an unconventional C-type lectin like receptor (CTLR) involved in the functional regulation of immune cells. However, the role of CD302 in fish remains unclear. In this study, we characterized a novel CD302 gene from ayu (Plecoglossus altivelis), which was tentatively named PaCD302. The cDNA sequence of PaCD302 is 1893 nucleotides in length, and encodes a polypeptide of 241 amino acids with molecular weight 27.1 kDa and pI 4.69. Sequence comparison and phylogenetic tree analysis showed that PaCD302 is a type I transmembrane CTLR devoid of the known amino acid residues essential for Ca(2+)-dependent sugar binding. PaCD302 mRNA expression was detected in all tissues and cells tested, with the highest level in the liver. Following Vibrio anguillarum infection, PaCD302 mRNA expression was significantly upregulated in all tissues tested. For further functional analysis, we generated a recombinant protein for PaCD302 (rPaCD302) by prokaryotic expression and raised a specific antibody against rPaCD302. Western blot analysis revealed that the native PaCD302 is glycosylated. Refolded rPaCD302 was unable to bind to five monosaccharides (l-fucose, d-galactose, d-glucose, d-mannose and N-acetyl glucosamine) or two other polysaccharides (lipopolysaccharide and peptidoglycan). It was able to bind to three Gram-positive and seven Gram-negative bacteria, but show no bacterial agglutinating activity. PaCD302 function blocking using anti-PaCD302 IgG resulted in inhibition of phagocytosis and bactericidal activity of ayu monocytes/macrophages (MO/MΦ), suggesting that PaCD302 regulates the function of ayu MO/MΦ. In summary, our study demonstrates that PaCD302 may participate in the immune response of ayu against bacterial infection via modulation of MO/MΦ function.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression Regulation
- Immunity, Innate
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Macrophages/immunology
- Monocytes/immunology
- Osmeriformes
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Alignment/veterinary
- Vibrio/physiology
- Vibrio Infections/genetics
- Vibrio Infections/immunology
- Vibrio Infections/microbiology
- Vibrio Infections/veterinary
Collapse
Affiliation(s)
- Shen-Xue Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hai-Ling Ma
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|