1
|
Liu Q, Liu Y, Zhang X, Huang W, Shu G, Zhao H, Dai L, Dai L. Comparative transcriptome profile reveals insight into the antibacterial immunity mechanism of the loach (Misgurnus anguillicaudatus) fed with soybean fermented broth during lipopolysaccharide (LPS) exposure. Int J Biol Macromol 2024; 259:129239. [PMID: 38184041 DOI: 10.1016/j.ijbiomac.2024.129239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Loach (Misgurnus anguillicaudatus) is a common freshwater commercial fish species in China. The meat of this fish is a good source of protein and other nutrients that are needed for human health. Aquaculture challenges such as diseases and pest susceptibility, excessive density, and nutritional deficiency result in low production of loach rather than increased demand. Due to a lack of knowledge about the immune system of loaches, we carried out this study to better understand its antibacterial molecular mechanism. Here, we performed RNA sequencing from liver tissue obtained from soya bean-fermented fed loach after subjecting it to the LPS challenge. The results revealed a total of 18,399 differentially expressed genes (DEGs) in the LPS-treated and control groups. There were 7482 DEGs that were upregulated and 10,917 DEGs were downregulated. The enrichment analysis of DEGs revealed that the majority of DEGs were found to be abundant in the pathways of DNA replication, spliceosome, nucleotide exception repair, cell cycle, and Herpes simplex virus 1 infection. Furthermore, qRT-PCR analysis of 21 selected DEGs demonstrated that the transcriptomic data is extremely reliable. Overall, this study provides insight into the molecular features and control mechanisms of genes that affect loach growth. The availability of this information will also contribute to the enhancement of the breeding and protection of loach resources.
Collapse
Affiliation(s)
- Qiuning Liu
- College of Wetland, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wentian Huang
- College of Basic Medicine, Chinese People's Liberation Army Naval Medical University, Shanghai 200433, PR China; Cardiology Department, General Hospital of Eastern Theater Command, Shanghai 201101, PR China
| | - Guixia Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, PR China.
| | - Lu Dai
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, PR China; The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
2
|
Catapano PL, Falcinelli M, Damiani C, Cappelli A, Koukouli D, Rossi P, Ricci I, Napolioni V, Favia G. De novo genome assembly of the invasive mosquito species Aedes japonicus and Aedes koreicus. Parasit Vectors 2023; 16:427. [PMID: 37986088 PMCID: PMC10658958 DOI: 10.1186/s13071-023-06048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Recently, two invasive Aedes mosquito species, Ae. japonicus and Ae. koreicus, are circulating in several European countries posing potential health risks to humans and animals. Vector control is the main option to prevent mosquito-borne diseases, and an accurate genome sequence of these mosquitoes is essential to better understand their biology and to develop effective control strategies. METHODS A de novo genome assembly of Ae. japonicus (Ajap1) and Ae. koreicus (Akor1) has been produced based on a hybrid approach that combines Oxford Nanopore long-read and Illumina short-read data. Their quality was ascertained using various metrics. Masking of repetitive elements, gene prediction and functional annotation was performed. RESULTS Sequence analysis revealed a very high presence of repetitive DNA and, among others, thermal adaptation genes and insecticide-resistance genes. Through the RNA-seq analysis of larvae and adults of Ae. koreicus and Ae. japonicus exposed to different temperatures, we also identified genes showing a differential temperature-dependent activation. CONCLUSIONS The assembly of Akor1 and Ajap1 genomes constitutes the first updated collective knowledge of the genomes of both mosquito species, providing the possibility of understanding key mechanisms of their biology such as the ability to adapt to harsh climates and to develop insecticide-resistance mechanisms.
Collapse
Affiliation(s)
- Paolo L Catapano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Monica Falcinelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Despoina Koukouli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, 62032, Camerino, Italy.
| |
Collapse
|
3
|
Dai W, Liu Y, Zhang X, Dai L. 16S rDNA profiling of Loach ( Misgurnus anguillicus) fed with soybean fermented powder intestinal flora in response to Lipopolysaccharide (LPS) infection. Heliyon 2023; 9:e22369. [PMID: 38053882 PMCID: PMC10694309 DOI: 10.1016/j.heliyon.2023.e22369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Soybean fermentation has a balancing effect on the regulation of intestinal flora. Relative research between fermented soybeans and intestinal microbiota is limited. Our aim was to explore the effects of soybean fermented fowder on lipopolysaccharide (LPS) induced intestinal microflora and corresponding functions in loach. 16S rDNA high-throughout sequencing was applied to estimate differences in the intestinal microbiota and predict genes function. Analysis of the overall of sequencing data showed that the ratio of Effective Tags in both the control group and the treatment group was greater than 80 %. Based on six major classifications involved in the phylum, class, order, family, genus, and species, we acquired the changes in the composition of intestinal microorganisms after the supplement of soybean fermented powder. These results showed that the dominant bacteria in the two groups were basically distinct at different levels. Alpha diversity analysis indicated that the microbial richness and uniformity of soybean fermented powder decreased compared to the control group. PICRUSt and Taxfun tools analysis of intestinal flora illustrated the functional genes of the six groups were mainly involved in metabolism, genetic information processing, cellular processes, environmental information processing, and human diseases at the level 1. These data clearly demonstrated the effect of soybean fermented powder on the gut microbiome. Not only that, it provides new ideas and insights for achieving high-quality utilization of soybean fermented powder. The potential mechanisms of soybean fermented powder to alter gut flora and intestinal microbiome function can further be explored.
Collapse
Affiliation(s)
- Weihong Dai
- Changtai District Center for Disease Prevention and Control, Zhangzhou, 363900, PR China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| |
Collapse
|
4
|
Tang YY, Liu QN, Wang C, Yang TT, Tang BP, Zhou CL, Dai LS. Proteomic analysis of differentially expressed proteins in the lipopolysaccharide-stimulated hepatopancreas of the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:318-323. [PMID: 31972292 DOI: 10.1016/j.fsi.2020.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.
Collapse
Affiliation(s)
- Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Cheng Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
5
|
Kluebsoongnoen J, Panyim S, Udomkit A. Regulation of vitellogenin gene expression under the negative modulator, gonad-inhibiting hormone in Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110682. [PMID: 32092399 DOI: 10.1016/j.cbpa.2020.110682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/15/2022]
Abstract
Vitellogenesis is a principal process during ovarian maturation in crustaceans. This process is negatively regulated by gonad-inhibiting hormone (GIH), a neuronal peptide hormone from eyestalks. However, the detailed mechanism through which GIH regulates Vg expression is still ambiguous. In this study, suppression subtractive hybridization (SSH) under specific GIH-knockdown condition was utilized to determine the expression of genes in the ovary that may act downstream of GIH to control vitellogenin synthesis in Penaeus monodon. The total of 102 and 82 positive clones of up-regulated and down-regulated genes in GIH- knockdown shrimp were identified from the forward and reverse SSH libraries, respectively. Determination of the expression profiles of these reproduction-related genes during ovarian development revealed that the expression of calreticulin (CALR) was significantly reduced in vitellogenic ovary suggesting its role in vitellogenesis. Suppression of CALR by specific dsRNA showed elevated vitellogenin (Vg) transcript level in the ovary at day 7 post-dsRNA injection. Since CALR can bind to steroid hormone receptors and prevents the binding of the receptor to its responsive element to regulate gene expression, it is possible that CALR is an inhibitory mediator of vitellogenin synthesis via steroidal pathway. Our results posted a possible novel pathway of GIH signaling that might interfere the steroid signaling cascade to mediate Vg synthesis in the shrimp.
Collapse
Affiliation(s)
- Jakkapong Kluebsoongnoen
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|