1
|
Liu Y, Cao M, Yan X, Cai X, Li Y, Li C, Xue T. Genome-wide identification of gap junction (connexins and pannexins) genes in black rockfish (Sebastes schlegelii): Evolution and immune response mechanism following challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108492. [PMID: 36529400 DOI: 10.1016/j.fsi.2022.108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication through gap junction channels is very important to coordinate the functions of cells in all multicellular biological tissues. It allows the direct exchange of ions and small molecules (including second messengers, such as Ca2+, IP3, cyclic nucleotides, and oligonucleotides). In this study, a total of 48 members of the gap junction (GJ) protein family were identified from Sebastes schlegelii. In S. schlegelii, GJ proteins were classified into two types, connexin, and pannexin, and then connexins were divided into five subfamilies. The naming of 48 genes was verified through phylogenetic analysis and syntenic analysis. The connexin proteins contained four transmembrane fragments and two extracellular loops, the lengths of the intracellular loop and C-terminal was quite different, and the C-terminal region was highly variable after post-translational modification. PPI analysis showed that GJs interacted with tight junctions, adhesive junctions, and cell adhesions to form a complex network and participated in cell-cell junction organization, ATP binding, ion channel, voltage-gated conduction, wnt signaling pathway, Fc-γ receptor signaling pathway, and DNA replication. In addition, the S. schlegelii GJ protein was highly expressed in intestinal tissues and remarkably regulated after Edwardsiella tarda and Streptococcus iniae infection. The expression of GJs in intestinal cells of S. schlegelii was significantly regulated by LPS and poly (I:C), which was consistent with the results of intestinal tissue stimulation by pathogens. In conclusion, this study can provide valuable information for further research on the function of S. schlegelii GJ proteins.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Sun Z, Xu C, Chen Y, Liu D, Wu P, Gao Q. Characterization of Pannexin1, Connexin32, and Connexin43 in Spotted Sea Bass ( Lateolabrax maculatus): They Are Important Neuro-Related Immune Response Genes Involved in Inflammation-Induced ATP Release. Front Immunol 2022; 13:870679. [PMID: 35514966 PMCID: PMC9062032 DOI: 10.3389/fimmu.2022.870679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many immunological diseases can be treated by regulating neurobehavior, in which extracellular ATP is a vital member of endogenous danger-associated molecular pattern signaling molecule that plays a crucial part in innate neuro-related immunity. It is actively released through pannexin (Panx) and connexin (Cx) hemichannels from activated or stressed cells during inflammation, injury, or apoptosis. In addition to participating in ATP release, Panxs and Cxs also have crucial immune functions. In this study, pannexin1, three connexin32 isoforms and connexin43 were identified and characterized in spotted sea bass (Lateolabrax maculatus), which were named LmPanx1, LmCx32.2, LmCx32.3, LmCx32.7, and LmCx43. Their similar topological structures were discovered by sequence analysis: a relatively unconserved C-terminal region and four highly conserved transmembrane (TM) domains, and so on. Each extracellular (ECL) region of Panx1 has two conserved cysteine residues. Unlike Panx1, each ECL region of Cx32 and Cx43 contains three conserved cysteine residues, forming two conserved motifs: CX6CX3C motif in ECL1 and CX4CX5C motif in ECL2. Furthermore, Panx1 and Cx43 share similar genomic organization and synteny with their counterparts in selected vertebrates. Cx32 and CX43 were located in the same locus in fish, but diverged into two loci from amphibian. Moreover, despite varying expression levels, the identified genes were constitutively expressed in all examined tissues. All genes were upregulated by PAMP [lipopolysaccharide and poly(I:C)] stimulation or bacterial infection in vivo and in vitro, but they were downregulated in the brain at 6 or 12 h after stimulation. Especially, the three LmCx32 isoforms and LmCx43 were upregulated by ATP stimulation in primary head kidney leukocytes; however, downregulation of LmCx32.3 and LmCx43 expression were noted at 12 h. Conversely, ATP treatment inhibited the expression of LmPanx1. Importantly, we showed that the spotted sea bass Panx1, Cx43, and Cx32 were localized on the cellular membrane and involved in inflammation-induced ATP release. Taken together, our results demonstrated that Panx1, Cx32, and Cx43 are important neuro-related immune response genes involved in inflammation-induced ATP release.
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuxi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Cai X, Gao C, Cao M, Su B, Liu X, Wang B, Li C. Genome-wide characterization of gap junction (connexins and pannexins) genes in turbot (Scophthalmus maximus L.): evolution and immune response following Vibrio anguillarum infection. Gene 2022; 809:146032. [PMID: 34673208 DOI: 10.1016/j.gene.2021.146032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/26/2023]
Abstract
Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Li S, Wang N, Zhang T, Feng Y, Wang L, Sun J. Characterization of three connexin32 genes and their role in inflammation-induced ATP release in the Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:181-189. [PMID: 32768708 DOI: 10.1016/j.fsi.2020.07.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Extracellular ATP (eATP) is a potent singling molecule in activation of fish innate immunity while the molecular determinants for eATP release in fish were not completely understood. Connexin32 (Cx32) is a member of gap junction protein family that plays important immunological functions in mammals. However, the immune relevance of Cx32 and its role in ATP release in fish has not been investigated. Here, we identified, characterized three Cx32 isoform genes (Cx32.2, Cx32.2x and Cx32.7) from the Japanese flounder Paralichthys olivaceus, and investigated their role in inflammation-induced ATP release in fish. Expression analysis revealed that even though all the three Cx32 genes are constitutively expressed in all examined Japanese flounder tissues, Cx32.2 and Cx32.2x are dominantly expressed in liver, and Cx32.7 is highly expressed in intestine and head kidney macrophages. In addition, we showed that gene expression of all the three Cx32 isoforms was modulated by cAMP stimulation and inflammatory challenges. Furthermore, we revealed that Cx32 expression was upregulated in TNF-alpha overexpressed Japanese flounder FG-9307 cells. Moreover, overexpression of the three Cx32 isoforms significantly reduced the gene expression level of LPS-induced pro-inflammatory cytokine IL-8 and TNF-alpha, indicating that Cx32 is involved in modulating inflammatory response in fish. Finally, we showed that inflammation-induced ATP release was significantly increased in Cx32-overexpressed Japanese flounder FG-9307 cells, and this increased ATP release could be attenuated by pre-incubation with gap junction protein blocker carbenoxolone. Taken together, we for the first time reported the involvement of Cx32 in fish immunity. Our findings suggested that in addition to Cx43 and pannexin1 channels, Cx32 also plays a role in inflammation-induced ATP release in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Tongtong Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Liyan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
5
|
Li S, Hao G, Feng Y, Li J, Wang N, Sun J. Functional characterization of two ecto-nucleoside triphosphate diphosphohydrolase 2 genes in Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2020; 99:535-547. [PMID: 32084539 DOI: 10.1016/j.fsi.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (ENTPDases) are pivotal regulators of extracellular ATP-mediated purinergic immune signaling. ENTPDase2 is a member of the cell surface-bound ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) protein family that hydrolyzes extracellular nucleoside 5'-triphosphates and nucleoside 5'-diphosphates. However, the immune relevance of ENTPDase2 in fish has not been elucidated. In the present study, from a comparative immunological perspective, we functionally characterized two ENTPDase2 transcript variants (namely ENTPDase2 and ENTPDase2a) from Japanese flounder (Paralichthys olivaceus). Sequence analysis indicates that the deduced Japanese flounder ENTPDase2 and ENTPDase2a proteins possess two conserved transmembrane domains and five apyrase conserved regions that are present in ENTPDase family proteins. However, these proteins only share 54% amino acid sequence identity. Tissue expression analysis revealed that both ENTPDase2 and ENTPDase2a mRNA transcripts are ubiquitously expressed in all examined Japanese flounder tissues, whereas ENTPDase2 is dominantly expressed in blood and ENTPDase2a is abundantly expressed in muscle. Immune challenge experiments showed that ENTPDase2 and ENTPDase2a were significantly upregulated by both inflammatory stimulation and Edwardsiella tarda infection. In addition, the expression of ENTPDase2 and ENTPDase2a was modulated by extracellular ATP (eATP) stimulation in a dose-dependent manner. Furthermore, immunolocalization and functional studies demonstrated that both ENTPDase2 and ENTPDase2a are functional glycosylated plasma membrane proteins. However, ENTPDase2a exhibits greater activity in the hydrolysis of eATP than ENTPDase2 and ENTPDase1 proteins. Finally, knockdown of the ENTPDase2 gene by small interfering RNA significantly upregulated the expression of eATP-induced proinflammatory cytokines IL-1beta, TNF-alpha and G-CSF in Japanese flounder head kidney macrophages, while knockdown of ENTPDase2a only upregulated eATP-induced IL-1beta expression. Taken together, our findings suggest that the two functional Japanese flounder ENTPDase2 isoforms play an essential role in the downregulation of eATP-induced proinflammatory cytokine expression in fish by degrading the available ATP levels in the extracellular milieu.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
6
|
Li S, Chen X, Li J, Li X, Zhang T, Hao G, Sun J. Extracellular ATP is a potent signaling molecule in the activation of the Japanese flounder ( Paralichthys olivaceus) innate immune responses. Innate Immun 2020; 26:413-423. [PMID: 31914841 PMCID: PMC7903527 DOI: 10.1177/1753425918804635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is the first line of defense against pathogen infections. Extracellular ATP (eATP) is one of the most studied danger-associated molecular pattern molecules that can activate host innate immune responses through binding with and activating purinergic receptors on the plasma membrane. The detailed actions of eATP on fish innate immunity, however, remain poorly understood. In this study, we investigated bacterial pathogen-induced ATP release in head kidney cells of the Japanese flounder Paralichthys olivaceus. We also examined the actions of eATP on pro-inflammatory cytokine and immune-related gene expression, the activity of induced NO synthase (iNOS), and the production of reactive oxygen species (ROS) and NO in Japanese flounder immune cells. We demonstrate that ATP is dynamically released from Japanese flounder head kidney cells into the extracellular milieu during immune challenge by formalin-inactivated Edwardsiella tarda and Vibrio anguillarum. In addition, we show that eATP administration results in profound up-regulation of pro-inflammatory cytokine gene expression, iNOS activity, and inflammatory mediator production, including ROS and NO, in Japanese flounder immune cells. Altogether, our findings demonstrate that eATP is a potent signaling molecule for the activation of innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| |
Collapse
|
7
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
8
|
Li S, Li J, Peng W, Hao G, Sun J. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Vet Res 2019; 15:20. [PMID: 30621683 PMCID: PMC6325855 DOI: 10.1186/s12917-018-1763-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/26/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Caspases are a family of conserved intracellular cysteine-dependent aspartate-specific cysteine proteases that play important roles in regulating cell death and inflammation. Our previous study revealed the importance of the inflammatory caspase 1 gene in extracellular ATP-mediated immune signaling in Japanese flounder, Paralichthys olivaceus. To explore the potential roles of other caspases in P. olivaceus innate immunity, we extended our study by characterizing of the responses of four additional P. olivaceus caspase genes, termed JfCaspase 2, 3, 6 and 8, to inflammatory challenge and extracellular ATP stimulation. RESULTS Sequence analysis revealed that the domain structures of all the Japanese flounder caspase proteins are evolutionarily conserved. Quantitative real-time PCR analysis showed that the JfCaspase 2, 3, 6 and 8 genes were expressed ubiquitously but at unequal levels in all examined Japanese flounder normal tissues. In addition, the basal gene expression levels of JfCaspase 2, 3, 6 and 8 were higher than those of JfCaspase 1 in both Japanese flounder head kidney macrophages (HKMs) and peripheral blood leukocytes (PBLs). Furthermore, immune challenge experiments showed that the inflammatory stimuli LPS and poly(I:C) significantly modulated the expression of the JfCaspase 2, 3, 6 and 8 genes in Japanese flounder immune cells. Finally, DNA fragmentation, associated with increased extracellular ATP-induced JfCaspase 2, 3, 6 and 8 gene expression and enzymatic activity, was inhibited by the caspase inhibitor Z-VAD-FMK in the HKMs. CONCLUSION Our findings demonstrate broad participation of multiple caspase genes in response to inflammatory stimulation in Japanese flounder immune cells and provide new evidence for the involvement of caspase(s) in extracellular ATP-induced apoptosis in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| |
Collapse
|
9
|
Yang H, Yan H, Li X, Liu J, Cao S, Huang B, Huang D, Wu L. Inhibition of Connexin 43 and Phosphorylated NR2B in Spinal Astrocytes Attenuates Bone Cancer Pain in Mice. Front Cell Neurosci 2018; 12:129. [PMID: 29867362 PMCID: PMC5951934 DOI: 10.3389/fncel.2018.00129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Bone cancer pain (BCP) is common in patients with advanced cancers when the tumors are metastasized to bone. The limited understanding of the complex pathogenesis of BCP leads to the poor effectiveness of clinical treatment. Previous studies have shown that astrocyte-specific connexin (Cx) 43, a forming protein of gap junction (GJ) and hemichannel, and N-methyl-D-aspartate receptors (NMDARs), especially the phosphorylated NMDAR 2B subunit (NR2B) phosphorylated NR2B (p-NR2B) subunit are involved in BCP. However, the relationship between Cx43 and p-NR2B in BCP remains unclear. In the present study, we investigated the expressions of Cx43, glial fibrillary acidic protein (GFAP, a marker of astrocytes), and p-NR2B in the spinal dorsal horn (SDH) in a mouse model of BCP established by intra-femural inoculation of Lewis lung carcinoma (LLC) cells via intrathecal (ith) injection of the GJ/hemichannel blocker carbenoxolone (CARB) and the NMDAR antagonist MK801, respectively. We found that the characters of BCP were mimicked by intra-femural inoculation of LLC cells in mice, and the expressions of Cx43, GFAP and p-NR2B in BCP mice were remarkably increased in a time-dependent manner from day 7 to day 21 after cell inoculation with a gradual aggravate in spontaneous pain and mechanical allodynia. Furthermore, Cx43 was predominantly expressed in the spinal astrocytes. Both CARB and MK801 inhibited the expressions of Cx43, GFAP and p-NR2B with attenuated pain hypersensitivity in BCP mice. In addition, Cx43 was co-localized with p-NR2B in the SDH, which further evidenced the presence of functional NR2B in the spinal astrocytes in BCP mice. Our findings demonstrate that inhibition of Cx43 and p-NR2B in spinal astrocytes could attenuate BCP in mice and Cx43 and p-NR2B in the astrocytes of the SDH may play an important role via their combination action in the development and maintenance of BCP in mice. These results may provide a potential therapeutic target in the prevention and/or treatment of BCP.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Hui Yan
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Jing Liu
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Baisheng Huang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
10
|
Paredes C, Li S, Chen X, Coddou C. Divalent metal modulation of Japanese flounder ( Paralichthys olivaceus) purinergic P2X7 receptor. FEBS Open Bio 2018; 8:383-389. [PMID: 29511615 PMCID: PMC5832984 DOI: 10.1002/2211-5463.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
Paralichthys olivaceus P2X7 receptor (poP2X7R) is a recently identified as a P2X7 purinergic receptor involved in innate immunity of the Japanese flounder Paralichthys olivaceus. Divalent metals are allosteric modulators of mammalian P2XRs, but there is no information for fish P2XRs. Here, we characterized the effects of divalent metals on poP2X7R channel activity by electrophysiology and molecular biology techniques. Copper, zinc and mercury inhibited poP2X7R‐mediated currents with different maximal inhibition potency, while cadmium had no effect on poP2X7R activity. Mercury‐induced inhibition was irreversible, but the inhibitory effects of copper and zinc were reversed after washout. Cooper and zinc also reduced poP2X7R‐mediated interleukin‐1 mRNA production. These findings suggest that divalent metals have potential effects on the Japanese flounder innate immune response through modulation of poP2X7R activity.
Collapse
Affiliation(s)
- Carolina Paredes
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance College of Life Sciences Tianjin Normal University China
| | - Claudio Coddou
- Department of Biomedical Sciences Faculty of Medicine Universidad Católica del Norte Coquimbo Chile
| |
Collapse
|
11
|
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:166-173. [PMID: 28389204 PMCID: PMC5628093 DOI: 10.1016/j.bbamem.2017.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 11000 Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Li S, Peng W, Hao G, Li J, Geng X, Sun J. Identification and functional analysis of dual-specificity MAP kinase phosphatase 6 gene (dusp6) in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 60:411-419. [PMID: 27940366 DOI: 10.1016/j.fsi.2016.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Dual-specificity phosphatase 6 (Dusp6) is a member of mitogen-activated protein kinase (MAPK) phosphatases that play crucial roles in regulating MAPK signaling and immune response. The immunological relevance of Dusp6 in fish, however, remains largely uncharacterized. In the present study, a full-length Japanese flounder dusp6 cDNA ortholog, termed PoDusp6, was identified and characterized from Paralichthys olivaceus. The deduced PoDusp6 protein is comprised of 383 amino acids with a conserved N-terminal regulatory rhodanese homology domain and a C-terminal catalytic domain. Immunofluorescence microscopy revealed that PoDusp6 protein is mainly localized in cytoplasm. Sequence analysis indicates that PoDusp6 is highly conserved (>70% identity) throughout the evolution from teleost to mammals. In unstimulated conditions, PoDusp6 mRNA was present in all examined tissues and showed the highest expression in Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments revealed that the expression of PoDusp6 was down-regulated at the early stage after LPS and poly(I:C) stimulations but significantly up-regulated at the later stage in the HKMs. The similar expression pattern was also observed in the Japanese flounder immune-related tissues including head kidney, gill and spleen upon bacterial challenge with Edwardsiella tarda. Overexpression of PoDusp6 in Japanese flounder FG-9307 cells led to a significant down-regulation of proinflammatory cytokine genes IL-1beta, TNF-alpha and IFN-gamma, and antiviral gene Mx. Interestingly, inhibition of Dusp6 activity also down-regulated the LPS-induced IL-beta gene expression but did not affected on the LPS-induced IFN-gamma and TNF-alpha expression in the HKMs. Our findings suggest that the expression of PoDusp6 is modulated by immune stimuli and PoDusp6 may act as an essential modulator in fish inflammatory response.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|