1
|
Li H, Nie H, Li D, Wang B, Huo Z, Su Y, Yan X. Transcriptome analysis provides new insights into the immune response of Ruditapes philippinarum infected with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109468. [PMID: 38432537 DOI: 10.1016/j.fsi.2024.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Manila clam (Ruditapes philippinarum) is a bivalve species with commercial value, but it is easily infected by pathogenic microorganisms in aquaculture, which restricts the shellfish industry. Notably, the impact of Vibrio alginolyticus on clam culture is obvious. In this study, RNA-seq was performed to analyze clam hepatopancreas tissue in 48 h (challenge group, G48h) and 96 h (challenge group, G96h) after infection with V. alginolyticus and 0 h after injection of PBS (control group, C). The results showed that a total of 1670 differentially expressed genes were detected in the G48h vs C group, and 1427 differentially expressed genes were detected in the G96h vs C group. In addition, KEGG analysis showed that DEGs were significantly enriched in pathways such as Lysosome and Mitophagy. Moreover, 15 immune related DEGs were selected for qRT-PCR analysis to verify the accuracy of RNA-seq, and the results showed that the expression level of DEGs was consistent with that of RNA-seq. Therefore, the results obtained in this study provides a preliminary understanding of the immune defense of R. philippinarum and molecular insights for genetic breeding of V. alginolyticus resistance in Manila clam.
Collapse
Affiliation(s)
- Hongda Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Bin Wang
- Dalian Jintuo Aquatic Food Co., Ltd, 116000 Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yanming Su
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
2
|
Kim JH, Lee HM, Cho YG, Shin JS, You JW, Choi KS, Hong HK. Flow cytometric characterization of the hemocytes of blood cockles Anadara broughtonii (Schrenck, 1867), Anadara kagoshimensis (Lischke, 1869), and Tegillarca granosa (Linnaeus, 1758) as a biomarker for coastal environmental monitoring. MARINE POLLUTION BULLETIN 2020; 160:111654. [PMID: 33181933 DOI: 10.1016/j.marpolbul.2020.111654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/24/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Marine bivalves are often used as a sentinel species in coastal environmental monitoring since changes in the environmental quality are often well preserved in their cells and tissues. Anadara and Tegillarca species of Arcidae, the blood cockles, are considered to be good sentinel species in monitoring coastal pollution and ecosystem health because they are distributed widely in the subsurface of intertidal mudflats. Internal cellular defense of the blood cockles to physical and biological stresses is mediated by the circulating hemocytes, while their hemocyte types and functions are poorly studied. In this study, we first characterized morphology and immune-related activities of hemocytes of three common blood cockles Anadara broughtonii, A. kagoshimensis, and Tegillarca granosa using flow cytometry. Based on cell morphology and immunological functions, we described five types of hemocytes identically in the three blood cockles: erythrocytes type-I (erythrocytes-I), erythrocytes type-II (erythrocytes-II), granulocytes, hyalinocytes, and blast-like cells. Erythrocytes were round cells containing hemoglobin with numerous granules in the cytoplasm and these cells consist of two central populations. Erythrocytes-I were the most abundant cells accounting for 80-89% of the total circulating hemocytes and exhibited a certain level of lysosome and oxidative capacity. Erythrocytes-II were the largest cells and displayed high lysosome content and the most active oxidative capacity. Both erythrocytes-I and erythrocytes-II did not show phagocytosis capacity. Granulocytes were intermediated-sized hemocytes characterized by granules in the cytoplasm and long pseudopodia on the cell surface, and these cells were mainly engaged in the cellular defense exhibiting the largest lysosome content, the most active phagocytosis, and high oxidative capacity. Contrary to granulocytes, hyalinocytes were comparatively small and round cells and exhibited no granules in the cytoplasm. Hyalinocytes displayed a certain level of lysosome and phagocytosis and oxidative capacities. Blast-like cells characterized by the smallest size and small quantity of cytoplasm and exhibited an absence of phagocytosis and extremely low oxidative capacity, suggesting that this population is not directly involved in the cell-mediated immune activities. In conclusion, flow cytometry indicated that three blood cockles had five types of hemocytes, and the erythrocytes and granulocytes were mainly involved in the immunological activities.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Mi Lee
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Young-Ghan Cho
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jong-Seop Shin
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae-Won You
- Korea Institute of Coastal Ecology, Inc., Bucheon 14449, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Life Science (BK21 PLUS) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
3
|
Van Nguyen T, Alfaro AC. Applications of flow cytometry in molluscan immunology: Current status and trends. FISH & SHELLFISH IMMUNOLOGY 2019; 94:239-248. [PMID: 31491532 DOI: 10.1016/j.fsi.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Flow cytometry (FCM) is routinely used in fundamental and applied research, clinical practice, and clinical trials. In the last three decades, this technique has also become a routine tool used in immunological studies of molluscs to analyse physical and chemical characteristics of haemocytes. Here, we briefly review the current implementation of FCM in the field of molluscan immunology. These applications cover a diverse range of practices from straightforward total cell counts and cell viability to characterize cell subpopulations, and further extend to analyses of DNA content, phagocytosis, oxidative stress and apoptosis. The challenges and prospects of FCM applications in immunological studies of molluscs are also discussed.
Collapse
Affiliation(s)
- Thao Van Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| |
Collapse
|
4
|
Zhou L, Zhao D, Wu B, Sun X, Liu Z, Zhao F, Lv Z, Yang A, Zhao Q, Zhang G, Ma C. Ark shell Scapharca broughtonii hemocyte response against Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 84:304-311. [PMID: 30219385 DOI: 10.1016/j.fsi.2018.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Scapharca broughtonii is one of the most important Arcidae aquaculture species in the Asia-Pacific region. We aimed to investigate the immune responses of hemocytes from ark shell S. broughtonii hemolymph against pathogens. Hemocyte ultrastructure and immunological activity in response to Vibrio anguillarum challenge were observed by scanning and transmission electron microscopy. Before ultrastructure observation, we used the API ZYM semi-quantitative kit to evaluate the levels of hydrolytic enzymes in the plasma and hemocytes following V. anguillarum infection. An enzyme-linked immunosorbent assay kit was used to investigate the variation in the lysozyme activity and hemocytes following bacterial infection. The results showed that hemocytes were the main defense cells against bacterial infection, whereas plasma played a role in the transport and support of hemocytes. It was presumed that an important function of lysozymes and hydrolytic enzymes in lysosomes was for bacterial digestion. Three major types of hemocytes were observed, namely, red blood cells (RBCs), white blood cells (WBCs), and thrombocytes (TCs). Scanning electron microscopy showed that the normal RBCs appeared pie-shaped with 10 μm diameter and 4 μm central thickness, whereas WBCs were spherical in shape with varying sizes, 4-8 μm diameter, and included small lymphocytes. TCs were long, spindle-shaped, and 12-20 μm in length. The cell membrane surface was smooth and even for all cells before pathogen challenge. Under transmission electron microscopy, RBCs displayed a limited ability to devour and digest bacteria adherent to the cell surface following infection. Many hemoglobin particles were observed in the RBC cytoplasm. WBCs were very active against bacterial invasion and showed a strong ability to digest and decompose infected and wrapped V. anguillarum through phagocytosis and lysosome fusion. Digestive vacuoles rapidly became transparent and were thought to contain increasing quantities of pathogen-induced lysozymes. WBCs that devoured pathogenic bacteria were prone to deformation as well as adhesion to each other. TCs were rich in endoplasmic reticulum (ER) content in their cytoplasm and were widely connected in a net-shaped structure. Mitochondria in TCs formed clusters upon invasion of V. anguillarum in the hemolymph. TCs disintegrated to release the ER into the plasma to form a mesh that facilitated clotting. The ability of circulating hemocytes to quickly modify their morphologies and stainability suggests that S. broughtonii is endowed with highly dynamic hemocyte populations capable of coping with environmental changes and rapidly growing pathogens.
Collapse
Affiliation(s)
- Liqing Zhou
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Dan Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 20090, PR China
| | - Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Xiujun Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Zhihong Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Feng Zhao
- Key Laboratory of East China Sea, Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, 20090, PR China
| | - Zhenming Lv
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Aiguo Yang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Qing Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 20090, PR China
| | - Gaowei Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 20090, PR China
| | - Chunyan Ma
- Key Laboratory of East China Sea, Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai, 20090, PR China
| |
Collapse
|
5
|
Xin L, Huang B, Li C, Bai C, Wang C. Characterization of a nucleus located mollusc mitoferrin and its response to OsHV-1 infection. Biochim Biophys Acta Gen Subj 2019; 1863:255-265. [DOI: 10.1016/j.bbagen.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
|
6
|
Ostreid Herpesvirus-1 Infects Specific Hemocytes in Ark Clam, Scapharca broughtonii. Viruses 2018; 10:v10100529. [PMID: 30274142 PMCID: PMC6213218 DOI: 10.3390/v10100529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
High levels of ostreid herpesvirus 1 (OsHV-1) were detected in hemocytes of OsHV-1 infected mollusks. Mollusk hemocytes are comprised of different cell types with morphological and functional heterogeneity. Granular cells are considered the main immunocompetent hemocytes. This study aimed to ascertain if OsHV-1 infects specific types of hemocytes in ark clams. Types of hemocytes were first characterized through microexamination and flow cytometry. In addition to a large group of red cells, there were three types of recognizable granular cells in ark clams. Type II granular cells were mostly found with OsHV-1 infection by transmission electron microscope (TEM) examination, and represented the hemocyte type that was susceptible to OsHV-1 infection. The subcellular location of OsHV-1 particles in apoptotic type II granular cells was further analyzed. Some OsHV-1 particles were free inside the apoptotic cells, which may contribute to OsHV-1 transmission among cells in the host, some particles were also found enclosed inside apoptotic bodies. Apoptosis is an important part of the host defense system, but might also be hijacked by OsHV-1 as a strategy to escape host immune attack. Following this investigation, a primary culture of type II granular cells with OsHV-1 infection would facilitate the research on the interaction between OsHV-1 and mollusk hosts.
Collapse
|
7
|
Zhao Q, Wu B, Liu Z, Sun X, Zhou L, Yang A, Zhang G. Molecular cloning, expression and biochemical characterization of hemoglobin gene from ark shell Scapharca broughtonii. FISH & SHELLFISH IMMUNOLOGY 2018; 78:60-68. [PMID: 29649584 DOI: 10.1016/j.fsi.2018.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Hemoglobin, the main component of haemolymph, is widely distributed in animals. Although its important oxygen transport functions has been extensively reported, studies on the immune function of hemoglobin in mollusc are few. Research on immune of hemoglobin of ark shell Scapharca broughtonii attracted more and more attention due to its ownership of erythrocyte comparing with many other shellfish. In this study, the hemoglobin cDNA of S. broughtonii was cloned by EST and RACE methods (named as SbHb). Sequence analysis revealed that the cDNA was 946 bp in length, including an open reading frame (ORF) of 459 bp which encoded a polypeptide of 152 amino acid residues, and a 5'-untranslated region (UTR) of 313 bp, a 3'-UTR of 174 bp. Sequence and homology analysis showed that the SbHb shared similarity with that of other related species. The mRNA expression profiles of SbHb in tested tissues analyzed by quantitative real-time PCR (qRT-PCR) revealed that the mRNA of SbHb could be all detected in foot, gill, mantle, adductor muscle, haemocytes and hepatopancreas, and the highest level was found in the haemocytes, which is 163.2 times higher than that in adductor muscle. Vibrio anguillarum stimulation and hypoxia treatment both had significant impact on the expression of SbHb, which showed the same trends as increasing first to the highest at 16 h after treatment and then followed by declining. Recombinant protein of SbHb (rSbHb) was successfully obtained by prokaryotic expression, and further function analysis indicated obviously that the rSbHb had very strong phenoloxidase-like activity (PO-like activity) and it could remarkably inhibit growth of gram-negative bacteria V. anguillarum. All the data suggested that the SbHb plays a significant role in the process of antibacterial and anoxia tolerance reaction in S. broughtonii, providing the evidence that SbHb is a key immune factor.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, PR China
| | - Zhihong Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, PR China.
| | - Xiujun Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, PR China
| | - Liqing Zhou
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, PR China
| | - Aiguo Yang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, PR China
| | - Gaowei Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
8
|
Huang X, Liu Y, Liu Z, Zhao Z, Dupont S, Wu F, Huang W, Chen J, Hu M, Lu W, Wang Y. Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus. CHEMOSPHERE 2018; 196:182-195. [PMID: 29304456 DOI: 10.1016/j.chemosphere.2017.12.183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/16/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Increased production of engineered nanoparticles (NPs) has raised extensive concerns about the potential toxic effects on marine organisms. Extensive evidences documented the impact of ocean acidification (OA) on the physiology and fitness of bivalves. In the present study, we investigated the biochemical responses of the mussel Mytilus coruscus exposed to both nano-ZnO and low pH relevant for ocean acidification conditions for 14 d followed by a 7-d recovery period. Most biochemical indexes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acid phosphatase (ACP) and alkaline phosphatase (ALP)) measured in gills and hemocytes were increased when the mussels were subject to low pH or high concentration of nano-ZnO, suggesting oxidative stress responses. No significant interactions between the two stressors were observed for most measured parameters. After a 1 week recovery period, low pH and nano-ZnO had less marked impact for SOD, GPx, ACP and ALP in hemocytes as compared to the end of the 14 d exposure. However, no recovery was observed in gills. Overall, our results suggest that both low pH and nano-ZnO induce an anti-oxidative response in Mytilus coruscus with gills being more sensitive than hemocytes.
Collapse
Affiliation(s)
- Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| | - Yimeng Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zekang Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zihao Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| | - Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| | - Jianfang Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|