1
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Paria P, Behera BK, Mohapatra PKD, Parida PK. Virulence factor genes and comparative pathogenicity study of tdh, trh and tlh positive Vibrio parahaemolyticus strains isolated from Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. INFECTION GENETICS AND EVOLUTION 2021; 95:105083. [PMID: 34536578 DOI: 10.1016/j.meegid.2021.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to β-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure 721102, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Pranaya Kumar Parida
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
3
|
Tran PTN, Kumar V, Bossier P. Do acute hepatopancreatic necrosis disease-causing PirAB VP toxins aggravate vibriosis? Emerg Microbes Infect 2021; 9:1919-1932. [PMID: 32799621 PMCID: PMC8284973 DOI: 10.1080/22221751.2020.1811778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.
Collapse
Affiliation(s)
- Phuong Thi Ngoc Tran
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Vikash Kumar
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium.,ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| |
Collapse
|
4
|
Najafpour B, Cardoso JCR, Canário AVM, Power DM. Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Front Immunol 2020; 11:568631. [PMID: 33381109 PMCID: PMC7768046 DOI: 10.3389/fimmu.2020.568631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
The complement system comprises a large family of plasma proteins that play a central role in innate and adaptive immunity. To better understand the evolution of the complement system in vertebrates and the contribution of complement to fish immunity comprehensive in silico and expression analysis of the gene repertoire was made. Particular attention was given to C3 and the evolutionary related proteins C4 and C5 and to one of the main regulatory factors of C3b, factor H (Cfh). Phylogenetic and gene linkage analysis confirmed the standing hypothesis that the ancestral c3/c4/c5 gene duplicated early. The duplication of C3 (C3.1 and C3.2) and C4 (C4.1 and C4.2) was likely a consequence of the (1R and 2R) genome tetraploidization events at the origin of the vertebrates. In fish, gene number was not conserved and multiple c3 and cfh sequence related genes were encountered, and phylogenetic analysis of each gene generated two main clusters. Duplication of c3 and cfh genes occurred across the teleosts in a species-specific manner. In common, with other immune gene families the c3 gene expansion in fish emerged through a process of tandem gene duplication. Gilthead sea bream (Sparus aurata), had nine c3 gene transcripts highly expressed in liver although as reported in other fish, extra-hepatic expression also occurs. Differences in the sequence and protein domains of the nine deduced C3 proteins in the gilthead sea bream and the presence of specific cysteine and N-glycosylation residues within each isoform was indicative of functional diversity associated with structure. The diversity of C3 and other complement proteins as well as Cfh in teleosts suggests they may have an enhanced capacity to activate complement through direct interaction of C3 isoforms with pathogenic agents.
Collapse
Affiliation(s)
- Babak Najafpour
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
5
|
Monreal-Escalante E, Rosales-Mendoza S, Govea-Alonso DO, Campa-Córdova ÁI, Angulo C. Genetically-engineered plants yield an orally immunogenic PirA-like toxin from Vibrio parahaemolyticus. Int J Biol Macromol 2019; 137:126-131. [PMID: 31238071 DOI: 10.1016/j.ijbiomac.2019.06.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
Abstract
Vibrio parahaemolyticus is the main etiological agent of human gastroenteritis by seafood consumption and some strains from this species causing the Acute Hepatopancreatic Necrosis Disease in shrimp have been recently reported. The PirA-like toxin from V. parahaemolyticus (ToxA) has been recently reported as an attractive antigen implicated in subunit vaccine development. Since plants are attractive hosts for the production and delivery of vaccines in the present study plants expressing ToxA were developed to account with a low cost platform for the production and oral delivery of ToxA. Tobacco plants were genetically engineered by Agrobacterium-mediated transformation to stably integrate the ToxA-coding gene into the nuclear genome. Transgenic lines were rescued in kanamycin-containing medium and analyzed by ELISA to determine ToxA yields observing levels up to 9 μg g-1 FW leaf tissues. Western blot analysis confirmed the presence of the ToxA protein in plant extracts. Immunogenicity assessment of the plant-made ToxA was performed in mice, comprising a 4-dose oral immunization scheme; revealing the induction of anti-ToxA humoral responses (IgG in serum and IgA in feces). This study opens the path for the development of low cost plant-based vaccines against Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, C.P. 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí S.L.P. C.P. 78210, Mexico; Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. C.P. 23096, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, C.P. 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí S.L.P. C.P. 78210, Mexico.
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, C.P. 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí S.L.P. C.P. 78210, Mexico
| | - Ángel I Campa-Córdova
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. C.P. 23096, Mexico
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. C.P. 23096, Mexico
| |
Collapse
|
6
|
Tello-Olea M, Rosales-Mendoza S, Campa-Córdova AI, Palestino G, Luna-González A, Reyes-Becerril M, Velazquez E, Hernandez-Adame L, Angulo C. Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:756-767. [PMID: 30368027 DOI: 10.1016/j.fsi.2018.10.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNP) stimulate immune responses in mammals but they have not been tested in species of relevance in aquaculture. In this study the immunostimulant and protective potential of orally administered AuNP against V. parahaemolyticus, the causative agent of Acute Hepatopancreatic Necrosis Disease, was determined in shrimp. Synthetized AuNP (18.57 ± 4.37 nm) were moderately dispersed with a negative ζ potential of -10.3 ± 0.208 mV (pH = 7). AuNP were administered (single dose) at 0.2, 2, and 20 μg/g feed in shrimp. Hemolymph samples were withdrawn daily for 6 days. Hemolymph or hemocytes were used to determine total hemocyte counts, immune-related enzymatic activities, and expression of immune-relevant genes. Hepatopancreas was sampled for the analysis of AuNP biodistribution and histological examination. Survival was recorded daily. No mortality or toxicity signs in hepatopancreas were found. AuNP were detected in hepatopancreas. Early (24-48 h) immunostimulation was mainly related to immune gene up-regulation. Upon a challenge with V. parahaemolyticus, survival was higher (80%) and histopathological damages were lower in shrimp treated with the 2 μg/g dose when compared to the control. Therefore orally administered AuNP are proposed as immunostimulants that protect shrimp against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- M Tello-Olea
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - S Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico
| | - A I Campa-Córdova
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - G Palestino
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico
| | - A Luna-González
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes #250, Guasave, Sinaloa, Mexico
| | - M Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - E Velazquez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - L Hernandez-Adame
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico; CONACyT-Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - C Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico.
| |
Collapse
|
7
|
Liu X, Yang MJ, Wang SN, Xu D, Li H, Peng XX. Differential Antibody Responses to Outer Membrane Proteins Contribute to Differential Immune Protections between Live and Inactivated Vibrio parahemolyticus. J Proteome Res 2018; 17:2987-2994. [PMID: 30095909 DOI: 10.1021/acs.jproteome.8b00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is widely accepted that live vaccines elicit higher immune protection than inactivated vaccines. However, the mechanisms are largely unknown. Here, an array with 64 recombinant outer membrane proteins of Vibrio parahemolyticus was developed to explore antibody responses of live and inactivated V. parahemolyticus post immunization of the 8th, 12th, 16th and 20th day. Among the 64 outer membrane proteins, 28 elicited antibody generation. They were all detected in live vaccine-induced immunity but only 15 antibodies were found in inactivated vaccine-induced immunity. Passive immunization showed that higher percent survival was detected in live than inactivated vaccine-induced immunities. Active immunization indicated that out of 19 randomly selected outer membrane proteins, 5 stimulated immune protection against V. parahemolyticus infection. Among them, antibodies to VP2309 and VPA0526 were shared in mice immunized by live or inactivated vaccines, whereas antibodies to VPA0548, VPA1745, and VP1667 were only found in mice immunized by live vaccine. In addition, live V. parahemolyticus stimulated earlier antibody response than inactivated bacteria. These results indicate that not all of the outer membrane proteins elicited antibody responses when they work together in the form of live or inactivated bacteria; live vaccine elicits more protective antibodies, which contribute to higher immune protection in live vaccine than inactivated vaccine. Notably, the recombinant proteins might be different from those separated from live bacteria, and they might be different in their immunogenic potencies.
Collapse
Affiliation(s)
- Xiang Liu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China.,College of Biological Science and Engineering , Shanxi University of Technology , Hanzhong 723001 , China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China.,Tibet Vocational Technical College , Lhasha 850000 , People's Republic of China
| | - Sheng-Nan Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China
| | - Di Xu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences , Sun Yat-sen University, University City, Guangzhou 510006 , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , China
| |
Collapse
|
8
|
Campa-Córdova AI, León-Gallo AF, Romero-Maldonado A, Ibarra-Serrano AC, Rosales-Mendoza S, Hirono I, Angulo C. Recombinant PirA-like toxin protects shrimp against challenge with Vibrio parahaemolyticus, the aetiological agent of acute hepatopancreatic necrosis disease. JOURNAL OF FISH DISEASES 2017; 40:1725-1729. [PMID: 28422302 DOI: 10.1111/jfd.12625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Affiliation(s)
- A I Campa-Córdova
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, La Paz, México
| | - A F León-Gallo
- Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, México
| | - A Romero-Maldonado
- Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, México
| | - A C Ibarra-Serrano
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, La Paz, México
| | - S Rosales-Mendoza
- Laboratorio de biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, México
| | - I Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - C Angulo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, La Paz, México
| |
Collapse
|
9
|
Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ. Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2017; 64:165-175. [PMID: 28315392 DOI: 10.1016/j.fsi.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
A yeast was isolated from hypersaline sediments, grown and phylogenetically characterized as Sterigmatomyces halophilus strainN16. The dietary administration of this yeast was studied for its effect on skin mucosal immune and antioxidant status of gilthead seabream (Sparus aurata L.). Fish were fed a commercial diet (control, non-supplemented diet), or the same commercial diet supplemented with 0.55% or 1.1% of yeast for 15 and 30 days. One month after the end of the trial, fish from all treatments were intraperitoneally injected with pathogenic Vibrio parahaemolyticus and further fed with the same diets for one week, after which fish were also sampled. Significant increases were observed in the immune activities determined in the fish fed the yeast supplemented diets compared with the values recorded in mucus of fish from the control group. The expression levels of trypsin (one of the main digestive enzymes) and several immune-related genes (IL-1β, TNF-α, IgM, C3 and lysozyme) were also evaluated by real-time PCR in intestine and skin. Interestingly, trypsin gene expression in intestine was up regulated in both experimental diets compared with the control group, particularly in fish fed with 0.55% of S. halophilus at any time of the experimental trial. Immune-related genes in intestine and skin were strongly expressed principally in fish fed with 0.55% of S. halophilus for 15 days and 1.1% for 30 days and after infection, respectively. The present results suggest that the yeast S. halophilus can be considered as a novel fish immunostimulant. The excellent potential of marine microorganisms isolated from extreme environments with beneficial properties for fish is discussed.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Crystal Guluarte
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| |
Collapse
|