1
|
Emam M, Kumar S, Eslamloo K, Caballero-Solares A, Hall JR, Xue X, Paradis H, Gendron RL, Santander J, Rise ML. Transcriptomic response of lumpfish ( Cyclopterus lumpus) head kidney to viral mimic, with a focus on the interferon regulatory factor family. Front Immunol 2024; 15:1439465. [PMID: 39211041 PMCID: PMC11357929 DOI: 10.3389/fimmu.2024.1439465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hélène Paradis
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Robert L. Gendron
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
2
|
Zhao X, Zhang Y, Gao T, Song N. Spleen Transcriptome Profiling Reveals Divergent Immune Responses to LPS and Poly (I:C) Challenge in the Yellow Drum ( Nibea albiflora). Int J Mol Sci 2023; 24:ijms24097735. [PMID: 37175446 PMCID: PMC10178140 DOI: 10.3390/ijms24097735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The yellow drum (Nibea albiflora) is a marine teleost fish with strong disease resistance, yet the understanding of its immune response and key functional genes is fragmented. Here, RNA-Seq was used to investigate the regulation pathways and genes involved in the immune response to infection with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly (I:C)) on the spleen of the yellow drum. There were fewer differentially expressed genes (DEGs) in the LPS-infected treatment group at either 6 or 48 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly significantly enriched in c5-branching dibasic acid metabolic and complement and coagulation cascades pathways. The yellow drum responded more strongly to poly (I:C) infection, with 185 and 521 DEGs obtained under 6 and 48 h treatments, respectively. These DEGs were significantly enriched in the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Jak-STAT signaling pathway, NOD-like signaling pathway, and cytokine-cytokine receptor interaction. The key functional genes in these pathways played important roles in the immune response and maintenance of immune system homeostasis in the yellow drum. Weighted gene co-expression network analysis (WGCNA) revealed several important hub genes. Although the functions of some genes have not been confirmed, our study still provides significant information for further investigation of the immune system of the yellow drum.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Na Song
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| |
Collapse
|
3
|
Wu L, Yin Z, Zheng Z, Tang Y, Guo S. Comprehensive Relationship Analysis of the Long Noncoding RNAs (lncRNAs) and the Target mRNAs in Response to the Infection of Edwardsiella anguillarum in European eel (Anguilla anguilla) Inoculated with Freund's Adjuvant. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:956-968. [PMID: 35995892 DOI: 10.1007/s10126-022-10157-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Freund's complete adjuvant (FCA) and incomplete adjuvant (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the non-specific immune enhancement. As long noncoding RNAs (lncRNAs) play vital regulating roles in various biological activities, in this study, we examined the genome-wide expression of transcripts in the liver of European eel (Anguilla anguilla, Aa) inoculated with FCA and FIA (FCIA) to elucidate the regulators of lncRNAs in the process of Edwardsiella anguillarum (Ea) infection and Aa anti-Ea infection using strand-specific RNA-seq. After eels were challenged by Ea at 28 days post the first inoculation (dpi), compared to the control uninfected eels (Li group), the control infected eels (Con_Li group) showed severe bleeding, hepatocyte atrophy, and thrombi formed in the hepatic vessels of the liver, although eels inoculated with FCIA (FCIA_Li group) also formed slight thrombi in the hepatic vessels. Compared to the FCIA_Li group, there was about 10 times colony-forming unit (cfu) in the Con_Li group per 100 μg liver tissue, and the relative percent survival (RPS) of eels was 50% in FCIA_Li vs Con_Li. Using high-throughput transcriptomics, differential expressed genes (DEGs) and transcripts were identified and the results were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). Interactions between the differential expressed lncRNAs (DE-lncRNAs) and the target DEGs were explored using Cytoscape according to their co-expression and co-location relationship. We found 13,499 lncRNAs (10,176 annotated and 3423 novel lncRNAs) between 3 comparisons of Con_Li vs Li, FCIA_Li vs Li, and FCIA_Li vs Con_Li, of which 111, 110, and 129 DE-lncRNAs were ascertained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs targeted by DE-lncRNAs revealed these DEGs mainly involved in single-organism cellular process in BP, membrane in CC and binding in MF, and KEGG pathways showed that the target DEGs in co-expression and co-location enriched in cell adhesion molecules. Finally, 118 DE-lncRNAs target 1161 DEGs were involved in an interaction network of 8474 co-expression and 333 co-location-related links, of which 16 DE-lncRNAs play vital roles in anti-Ea infection. Taken together, the interaction networks revealed that DE-lncRNAs underlies the process of Ea infection and Aa anti-Ea infection.
Collapse
Affiliation(s)
- Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Zhijie Yin
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China
| | - Zhijin Zheng
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China
| | - Yijun Tang
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI, USA
| | - Songlin Guo
- Fisheries College, Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
4
|
Wang R, Huang Y, Shi Y, Zhao Z. Transcriptome Analysis of the Kidney of Obscure Puffer, Takifugu obscurus, Challenged with Poly(I:C). Zoolog Sci 2022; 39:198-205. [DOI: 10.2108/zs210070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Ruixia Wang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yan Shi
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
5
|
He W, Wu L, Li S, Guo S. Transcriptome RNA-seq revealed lncRNAs activated by Edwardsiella anguillarum post the immunization of OmpA protecting European eel (Anguilla anguilla) from being infected. FISH & SHELLFISH IMMUNOLOGY 2021; 118:51-65. [PMID: 34474148 DOI: 10.1016/j.fsi.2021.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various biological activities as vital regulators. However, no study has focused on the lncRNA regulation of Outer membrane protein (OMP) immunization against aquatic bacterial infection. In this study, we examined the genome-wide expression of lncRNAs in the liver of European eel (Anguilla anguilla, Aa) administrated by a recombinant OmpA (rOmpA) from Edwardsiella anguillarum (Ea) to elucidate the functions of lncRNAs in the process of Ea infection and Aa anti-Ea infection using strand specific RNA-seq. Eels were challenged by Ea at 28 d post the immunization (dpi) of OmpA, and the result showed, compared to uninfected livers in the PBS group (Con group), the infected livers in the PBS group (Con_inf group) showed severe bleeding, hepatocyte atrophy and thrombi formed in the hepatic vessels; livers in the OmpA group (OmpA_inf) also formed slight thrombi in the hepatic vessels. The relative percent survival of eels in OmpA_inf vs Con_inf was 78.6%. Using high-throughput transcriptomics, we found 13405 lncRNAs in 3 compares of Con_inf vs Con, OmpA_inf vs Con and OmpA_inf vs Con_inf, of which 111, 129 and 158 DE-lncRNAs were ascertained. GO analysis of the DE-lncRNAs revealed the targeting DEGs were mainly involved in single-organism process, signaling, biological process and response to stimulus in BP, component of membrane in CC and binding in MF; KEGG pathways showed that the targeting DEGs in co-expression and co-location enriched in cell adhesion molecules. Finally, 54 DE-lncRNAs targeting 1675 DEGs were involved in an interaction network of 21692 co-expression and 483 co-location related links, of which 18 DE-lncRNAs appear to play crucial roles in anti-Ea infection. Thus, the interaction networks revealed crucial DE-lncRNAs underlying the process of Ea infection and Aa anti-Ea infection pre and post the immunization of OmpA.
Collapse
Affiliation(s)
- Wenxuan He
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Liqun Wu
- College of Overseas Education, Jimei University, Xiamen, 361021, China
| | - Senlin Li
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
6
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
7
|
Zhou X, Zhang GR, Ji W, Shi ZC, Ma XF, Luo ZL, Wei KJ. The Dynamic Immune Response of Yellow Catfish ( Pelteobagrus fulvidraco) Infected With Edwardsiella ictaluri Presenting the Inflammation Process. Front Immunol 2021; 12:625928. [PMID: 33732247 PMCID: PMC7959794 DOI: 10.3389/fimmu.2021.625928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Edwardsiella ictaluri is a highly destructive pathogen in cultured yellow catfish, thus it was very necessary to study the immune response of yellow catfish against bacterial infection. In this study, RNA-Seq technology was used to study the immune response in two distinct tissues of yellow catfish at eight different time points (h) after E. ictaluri infection. The number of differentially expressed genes (DEGs) in the spleen and liver was low at 3 h and 6 h post-infection, respectively. Afterwards, the most number of DEGs in the spleen was detected at 72 h, while the number of DEGs in the liver maintained a high level from 24 h to 120 h. The GO and KEGG enrichment analyses of DEGs at different time points uncovered that cytokines were continuously transcribed at 6 h to 120 h; whereas the liver is the main organ that secretes the components of the complement system, and metabolic regulation was activated from 12 h to 120 h. Moreover, an overview of the inflammation response of yellow catfish was exhibited including pattern-recognition receptors, inflammatory cytokines, chemokines, complements, and inflammation-related signal pathways. The similar expression tendency of nine genes by qRT-PCR validated the accuracy of transcriptome analyses. The different transcriptomic profiles obtained from the spleen and liver will help to better understand the dynamic immune response of fish against bacterial infection, and will provide basic information for establishing effective measures to prevent and control diseases in fish.
Collapse
Affiliation(s)
- Xu Zhou
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Gui-Rong Zhang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xu-Fa Ma
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zun-Lan Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kai-Jian Wei
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Tang YY, Li YT, Zha XH, Zhang DZ, Tang BP, Liu QN, Jiang SH, Dai LS. A complement factor I (CFI) gene mediates innate immune responses in yellow catfish Pelteobagrus fulvidraco. Genomics 2020; 113:1257-1264. [PMID: 32949684 DOI: 10.1016/j.ygeno.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
This study isolated CFI gene from Pelteobagrus fulvidraco and named it PfCFI. The cDNA of PfCFI is 2374 bp long, including a 52 bp 5' untranslated sequence, a 222 bp 3' untranslated sequence, and an open reading frame (ORF) of 2100 bp encoding polypeptide consisting of 699 amino acids. Phylogenetic analysis revealed that the PfCFI was closely related to CFI of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis indicate that there is the PfCFI gene which expressed in all the rest of tested tissues in varied levels, and mainly distributed in liver and least in heart. The reseachers induce the expressions level of PfCFI gene in liver, spleen, head kidney and blood at different points in time after challenged with lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C), respectively. Together these results suggested that CFI gene plays an important role in resistance to pathogens in yellow catfish immunity.
Collapse
Affiliation(s)
- Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xiao-Han Zha
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
9
|
Zhang J, Cui Z, Hu G, Jiang X, Wang J, Qiao G, Li Q. Transcriptome analysis provides insights into the antiviral response in the spleen of gibel carp (Carassius auratus gibelio) after poly I: C treatment. FISH & SHELLFISH IMMUNOLOGY 2020; 102:13-19. [PMID: 32247830 DOI: 10.1016/j.fsi.2020.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Gibel carp (Carassius auratus gibelio) is an important commercial fish that has become one of the most cultured fishes in the region of Yangtze River in China. However, the fish faces increasing hazard due to cyprinid herpesvirus 2 (CyHV-2) infection, which has caused great economic losses. In this study, healthy gibel carp were intraperitoneally injected with different doses of poly I:C at 24 h before CyHV-2 challenge. Results showed that the mortality decreased and peak death time appeared later in the fish injected with poly I:C at a dose of 10 μg/g body weight. To explore what gene plays an important role after poly I:C treatment, the transcriptome analysis of the gibel carp spleen was further performed. Compared with the PBS group, 1286 differentially expressed genes (DEGs) were obtained in the poly I:C-treated fish, including 1006 up-regulated and 280 down-regulated DEGs. GO analysis revealed that the most enriched DEGs responded to "biological regulation", "regulation of cellular process" and "regulation of biological process". Meanwhile, KEGG enrichment analysis showed that the DEGs were mainly mapped on the immune pathways like "TNF signal pathway", "p53 signal pathway" and "JAK-STAT signal pathway", suggesting that these signal pathways may be responsible for the delayed peak of CyHV-2 infection in gibel carp after poly I:C treatment. Taken together, this study provides insights into the immune protection effect of poly I:C against CyHV-2 infection, as well as providing useful information for antiviral defense in gibel carp.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhengyi Cui
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Guangyao Hu
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyu Jiang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jia Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Guo Qiao
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
10
|
Comparative Transcriptome Analysis of Gill Tissue in Response to Hypoxia in Silver Sillago ( Sillago sihama). Animals (Basel) 2020; 10:ani10040628. [PMID: 32268576 PMCID: PMC7222756 DOI: 10.3390/ani10040628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Silver sillago (Sillago sihama) is a commercially important marine fish species in East Asia. In this study, we compared the transcriptome response to hypoxia stress in the gill tissue of S. sihama. The fish were divided into four groups, such as 1 h of hypoxia (hypoxia1h, DO = 1.5 ± 0.1 mg/L), 4 h of hypoxia (hypoxia4h, DO = 1.5 ± 0.1 mg/L), 4 h of reoxygen (reoxygen4h, DO = 8.0 ± 0.2 mg/L) after 4 h of hypoxia (DO = 1.5 mg/L), and normoxia or control (DO = 8.0 ± 0.2 mg/L) groups. Compared to the normoxia group, a total of 3550 genes were identified as differentially expressed genes (DEGs) (log2foldchange > 1 and padj < 0.05), including 1103, 1451 and 996 genes in hypoxia1h, hypoxia4h and reoxygen4h groups, respectively. Only 247 DEGs were differentially co-expressed in all treatment groups. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEGs were significantly enriched in steroid biosynthesis, biosynthesis of amino acids, glutathione metabolism and metabolism of xenobiotics by cytochrome P450, ferroptosis and drug metabolism-cytochrome P450 pathways. Of these, the cytochrome P450 (CYP) and glutathione S-transferase (GST) gene families were widely expressed. Our study represents the insights into the underlying molecular mechanisms of hypoxia stress.
Collapse
|
11
|
Liu QN, Yang TT, Wang C, Jiang SH, Zhang DZ, Tang BP, Ge BM, Wang JL, Wang D, Dai LS. A non-mammalian Toll-like receptor 26 (TLR26)gene mediates innate immune responses in yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2019; 95:491-497. [PMID: 31689551 DOI: 10.1016/j.fsi.2019.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, we identified a fish-specific Toll-like receptor (TLR) in Pelteobagrus fulvidraco, an economically important freshwater fish in China. This TLR, PfTLR26, was shown to be encoded by a 3084 bp open reading frame (ORF), producing a polypeptide 1027 amino acids in length. The PfTLR26 protein contains a signal peptide, eight leucine-rich repeat (LRR) domains, two LRR_TYP domains in the extracellular region, and a Toll/interleukin (IL)-1 receptor (TIR) domain in the cytoplasmic region, consistent with the characteristic TLR domain architecture. This predicted 117.1 kDa protein was highly homologous to those of other fish, with phylogenetic analysis revealing the closest relation to TLR26 of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that the PfTLR26 gene was expressed in all tissues tested, with the highest expression levels seen in the head kidney and blood, and the lowest seen in muscle. PfTLR26 exhibited significant upregulation in liver, spleen, head kidney, and blood at different time points following challenge with the common TLR agonists lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C). Taken together, these results suggest that PfTLR26 may be an important component of the P. fulvidraco innate immune system, participating in the transduction of TLR signaling under pathogen stimulation.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People's Republic of China
| | - Cheng Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China.
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Dong Wang
- Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, People's Republic of China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| |
Collapse
|
12
|
Molecular identification and expression analysis of natural resistance-associated macrophage protein (Nramp) gene from yellow catfish Pelteobagrus fulvidraco (Siluriformes: Bagridae). Int J Biol Macromol 2019; 141:345-350. [PMID: 31491517 DOI: 10.1016/j.ijbiomac.2019.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Natural resistance associated macrophage protein genes (Nramp) is one of the important candidate genes responsible for regulating immune response against pathogen infection. The aim of the present was to quantify expression of Nramp gene in response to pathogen infection. Here, a Nramp was identified and molecularly characterized from Pelteobagrus fulvidraco (PfNramp). The obtained 3134 bp cDNA fragment of PfNramp comprised a 5'-untranslated region (UTR) of 81 bp, a 3'-UTR of 1403 bp and an open reading frame (ORF) of 1650 bp, encoding a polypeptide of 549 amino acids that contained a typical structural features of Nramp domain (Pfam01566). BLAST analysis exhibited that PfNramp shared sequence similarity to other organisms, in particular to Ictalurus furcatus (92%), Danio rerio (82%), and Homo sapiens (77%). Phylogenetic analysis revealed that PfNramp is close to Teleostei. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that PfNramp was expressed in all examined tissues, with the highest abundance in liver. The mRNA expression of PfNramp was remarkably increased at different time points after lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C) challenge. These results suggest that PfNramp is an inducible protein in the innate immune reactions of P. fulvidraco and probably in other fish species.
Collapse
|
13
|
Yang Y, Liu D, Wu L, Huang W, Yang S, Xia J, Liu X, Meng Z. Comparative transcriptome analyses reveal changes of gene expression in fresh and cryopreserved yellow catfish (Pelteobagrus fulvidraco) sperm and the effects of Cryoprotectant Me 2SO. Int J Biol Macromol 2019; 133:457-465. [PMID: 31002905 DOI: 10.1016/j.ijbiomac.2019.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
This study, for the first time in fish, compared the transcriptome of fresh and frozen-thawed sperm, and would help to better understand the effect of cryopreservation on fish sperm and then better preserve the aquatic germplasm resources. Here, we employed high-throughput sequencing technology to obtain the transcriptome of yellow catfish from fresh sperm, cryopreserved sperm with and without cryoprotectant. When cryoprotectant (Me2SO) was excluded, down-regulated genes were significantly enriched into calcium ion binding, cytoskeletal protein binding, microfilament motor activity, calmodulin binding and carnitine O-acyltransferase activity, which affected Ca2+ regulation, cellular morphology, motility and metabolism. Moreover, heat shock proteins and genes associated with regulation of cholesterol, HCO3- and protein tyrosine phosphorylation (PTP) were down-regulated, and thus would impair ability against stress, membrane rigidity, pH regulation and signal transduction of cryopreserved sperm. After Me2SO was added, the amounts of DEGs decreased significantly and down-regulation of genes were found mainly in cytoskeleton and heat shock proteins, thereby suggesting that Me2SO effectively reduced the impact caused by low temperature on gene expression. Whether adding Me2SO or not, the up-regulated genes were mainly found in ribosomal proteins genes. However, when Me2SO was added, over-expression of some genes might contribute to maintain normal function of cryopreserved sperm.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongqing Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Sen Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junhong Xia
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaochun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Molecular Cloning and Expression Analysis of Interleukin-8 and -10 in Yellow Catfish and in Response to Bacterial Pathogen Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9617659. [PMID: 31317044 PMCID: PMC6601492 DOI: 10.1155/2019/9617659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an important economic freshwater aquaculture species in Asia. However, little is known about its immune response to bacterial pathogen infection. Here, two cytokines, the proinflammatory cytokine interleukin-8 (IL-8) and the anti-inflammatory cytokine interleukin-10 (IL-10), were identified and characterized in the yellow catfish for the first time. We found that the full length of the IL-8 cDNA was 784 bp and contained an open reading frame (ORF) of 336 bp, while the IL-10 gene was 973 bp in length with a 549 bp of ORF. In addition, both the IL-8 and the IL-10 had similar tissue-specific expression patterns. They were more abundant in the spleen and lowest expressed in the liver. Furthermore, IL-10 but not IL-8 was significantly upregulated in the intestine of yellow catfish by feed supplementation of Clostridium butyricum (CB). More importantly, the expression levels of intestinal IL-10 and IL-8 were up- and downregulated by pathogen Aeromonas punctata stimuli with the presence of CB, respectively. Collectively, these results suggest that IL-10 and IL-8 mediate important roles in the immunity of yellow catfish, and feed supplementation of CB may able to reduce the intestinal inflammation caused by bacteria infections through regulating the expression of IL-10 and IL-8.
Collapse
|
15
|
Han YC, Chen TT. A pathway-focused RT-qPCR array study on immune relevant genes in rainbow trout (Oncorhynchus mykiss) harboring cecropin P1 transgene. FISH & SHELLFISH IMMUNOLOGY 2019; 89:1-11. [PMID: 30902722 DOI: 10.1016/j.fsi.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Recently, our laboratory had produced five families of transgenic rainbow trout harboring cecropin P1 transgene, and via repeated challenge studies these fish exhibited a significant elevation of resistance to infection by microbial pathogens. By cDNA microarray and mRNA deep sequencing (mRNA-seq) analyses on two of the five families of cecropin P1 transgenic fish, differentially expressed genes (DEGs) relevant to the innate and adaptive immune pathways in three different immune-related tissues, (i.e. spleen, kidney and liver) were profiled. These results supported our hypothesis that in addition to its direct microbicidal activity, the transgene product of cecropin P1 induces immunomodulatory activity in the transgenic host. Here, we have adapted the technique of quantitative reverse transcription real time PCR (RT-qPCR) array to analyze the expression of genes relevant to the innate and adaptive immune pathways in the rest three families. A RT-qPCR array was constructed with oligonucleotide primers of fifty-two innate/adaptive immune relevant DEGs shown to be the most perturbed by cecropin P1 transgene product in previous studies. Messenger RNA isolated from the spleen, kidney and liver of transgenic fish and non-transgenic fish control were studied on this array. Results of RT-qPCR array revealed that statistically significant perturbations of gene expression were detected in pathways of cytokine/chemokine signaling, Toll-like receptor signaling, complement cascade, antigen processing/presentation, lysosomal phagocytosis and leukocyte trans-endothelial migration in the transgenic spleen; extracellular matrix (ECM) organization and leukocyte trans-endothelial migration pathways in the transgenic kidney; lysosomal activity pathway in the transgenic liver. Furthermore, genes related to the pathways of the peroxisome proliferator-activated receptors (PPAR) signaling, lipid metabolism process and arachidonic acid metabolism were also impacted in the transgenic liver. Findings of the current study are in good agreement with those discoveries in previous two transgenic families by cDNA microarray and mRNA-seq analyses.
Collapse
Affiliation(s)
- Yueh-Chiang Han
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
16
|
Liu Y, Xin ZZ, Zhu XY, Wang Y, Zhang DZ, Jiang SH, Zhang HB, Zhou CL, Liu QN, Tang BP. Transcriptomic analysis of immune-related genes in the lipopolysaccharide-stimulated hepatopancreas of the mudflat crab Helice tientsinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 83:272-282. [PMID: 30217505 DOI: 10.1016/j.fsi.2018.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
The mudflat crab Helice tientsinensis is one of the most economically important aquaculture species in China. Nevertheless, it is susceptible to various diseases caused by viruses, bacteria and rickettsia-like organisms. A better understanding of the immune system and genes related to the responses to bacterial and viral infection is required. Herein, the hepatopancreas transcriptome of H. tientsinensis was analyzed by comparing control and lipopolysaccharide (LPS)-stimulated RNA-Seq data, yielding 91,885,038 bp and 13.78 Gb of clean reads. Following assembly and annotation, 93,207 unigenes with an average length of 883 bp were identified, of which 31,674 and 13,700 were annotated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Following LPS, 4845 differentially expressed genes (DEGs) were identified, of which 2491 and 2354 were up- and down-regulated, respectively. To further investigate immune-related DEGs, KEGG enrichment analysis identified immune response pathways, most notably the peroxisome and Toll-like receptor signaling pathways. Quantitative real time-PCR (qRT-PCR) confirmed the up-regulation of a random selection of DEGs. This systematic transcriptomic analysis of the innate immune pathway in H. tientsinensis expands our understanding of the immune system in crabs.
Collapse
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Ying Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224051, PR China.
| |
Collapse
|
17
|
Kang L, Wang L, Wu C, Jiang L. Molecular characterization and expression analysis of tumor necrosis factor receptor-associated factors 3 and 6 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2018; 82:27-31. [PMID: 30075247 DOI: 10.1016/j.fsi.2018.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The large yellow croaker (Larimichthys crocea) has a well-developed innate immune system. To gain a better understanding of the defense mechanisms involved in this system, we studied tumor necrosis factor receptor-associated factors (TRAFs), which play important roles in the Toll-like receptor (TLR) pathway. We characterized the full-length open reading frames and protein structures of TRAF3 and TRAF6 to determine their identities, and conducted phylogenetic analysis to determine their evolutionary relationships. To assess the roles of TRAFs in innate immune responses in the large yellow croaker, we performed quantitative reverse-transcription PCR (qRT-PCR) to characterize expression profiles in a range of tissues at different stages after challenge with polyinosinic polycytidylic acid (poly I:C) and Vibrio anguillarum. Following poly I:C challenge, the expression levels of TRAF3 and TRAF6 were highest in the kidneys and lowest in the spleen, whereas after infection with V. anguillarum, TRAF6 expression was the highest in the kidneys and lowest in the liver.
Collapse
Affiliation(s)
- Lisen Kang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Luping Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
18
|
Zhao XM, Chu XH, Liu Y, Liu QN, Jiang SH, Zhang DZ, Tang BP, Zhou CL, Dai LS. A myeloid differentiation factor 88 gene from yellow catfish Pelteobagrus fulvidraco and its molecular characterization in response to polyriboinosinic polyribocytidylic acid and lipopolysaccharide challenge. Int J Biol Macromol 2018; 120:1080-1086. [PMID: 30176326 DOI: 10.1016/j.ijbiomac.2018.08.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adaptor protein of Toll-like receptor (TLR) signalling pathways that activates the innate immune system. Herein, MyD88 was identified in the economically important freshwater fish Pelteobagrus fulvidraco. The complete 2156 bp PfMyD88 cDNA includes a 147 bp 5'-untranslated region (UTR), a 1133 bp 3'-UTR, and an open reading frame (ORF) of 876 bp encoding a 291 residue protein containing Death and Toll/interleukin-1 receptor (TIR) domains. The deduced protein sequence shares 88.8%, 73.8% and 59.3% identity with orthologs in Ictalurus punctatus, Danio rerio and Homo sapiens, respectively. qRT-PCR revealed expression in all tested tissues, highest in trunk kidney, followed by spleen, and lowest in muscle. After challenge with lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (Poly I:C), PfMyD88 expression was up-regulated in blood, liver, head kidney and spleen. Thus, PfMyD88 acts in innate immunity in P. fulvidraco.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China.
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
19
|
Liu Y, Xin ZZ, Song J, Zhu XY, Liu QN, Zhang DZ, Tang BP, Zhou CL, Dai LS. Transcriptome Analysis Reveals Potential Antioxidant Defense Mechanisms in Antheraea pernyi in Response to Zinc Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8132-8141. [PMID: 29975524 DOI: 10.1021/acs.jafc.8b01645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The growth and development of the Chinese oak silkworm, Antheraea pernyi, are strongly influenced by environmental conditions, including heavy metal pollution. An excess of heavy metals causes cellular damage through the production of free radical reactive oxygen species. In this study, transcriptome analysis was performed to investigate global gene expression when A. pernyi was exposed to zinc infection. With RNA sequencing (RNA-Seq), a total of 25 795 510 and 38 158 855 clean reads were obtained from zinc-treated and control fat body libraries, respectively. We identified 2399 differential expression genes (DEGs) (1845 upregulated and 544 downregulated genes) in the zinc-treated library. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were related to the peroxisome pathway that was associated with antioxidant defense. Our results suggest that fat bodies of A. pernyi constitute a strong antioxidant defense against heavy metal contamination.
Collapse
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering , Nanjing University of Technology , Nanjing 210009 , People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering , Nanjing University of Technology , Nanjing 210009 , People's Republic of China
| | - Jiao Song
- College of Life Science , Anhui Agricultural University , Hefei 230036 , People's Republic of China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
| |
Collapse
|
20
|
Huang H, Zheng J, Shen N, Wang G, Zhou G, Fang Y, Lin J, Zhao J. Identification of pathways and genes associated with synovitis in osteoarthritis using bioinformatics analyses. Sci Rep 2018; 8:10050. [PMID: 29968759 PMCID: PMC6030156 DOI: 10.1038/s41598-018-28280-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Synovitis in osteoarthritis (OA) is a very common condition. However, its underlying mechanism is still not well understood. This study aimed to explore the molecular mechanisms of synovitis in OA. The gene expression profile GSE82107 (downloaded from the Gene Expression Omnibus database) included 10 synovial tissues of the OA patients and 7 synovial tissues of healthy people. Subsequently, differentially expressed gene (DEG) analysis, GO (gene ontology) enrichment analysis, pathway analysis, pathway network analysis, and gene signal network analysis were performed using Gene-Cloud of Biotechnology Information (GCBI). A total of 1,941 DEGs consisting of 1,471 upregulated genes and 470 downregulated genes were determined. Genes such as PSMG3, LRP12 MIA-RAB4B, ETHE1, SFXN1, DAZAP1, RABEP2, and C9orf16 were significantly regulated in synovitis of OA. In particular, the MAPK signalling pathway, apoptosis, and pathways in cancer played the most important roles in the pathway network. The relationships between these pathways were also analysed. Genes such as NRAS, SPHK2, FOS, CXCR4, PLD1, GNAI2, and PLA2G4F were strongly implicated in synovitis of OA. In summary, this study indicated that several molecular mechanisms were implicated in the development and progression of synovitis in OA, thus improving our understanding of OA and offering molecular targets for future therapeutic advances.
Collapse
Affiliation(s)
- Hui Huang
- Department of Orthopaedic Surgery, Jinling Hospital(Nanjing General Hospital of Nanjing Military Region), The First School of Clinical Medicine, Southern Medical University(Guangzhou), 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.,Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Jiaxuan Zheng
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Ningjiang Shen
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Guangji Wang
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Gang Zhou
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Yehan Fang
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China
| | - Jianping Lin
- Department of Orthopaedic Surgery, Hainan Provincial People's Hospital, Haikou, 570311, Hainan Province, China.
| | - Jianning Zhao
- Department of Orthopaedic Surgery, Jinling Hospital(Nanjing General Hospital of Nanjing Military Region), The First School of Clinical Medicine, Southern Medical University(Guangzhou), 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.
| |
Collapse
|
21
|
Sudhagar A, Kumar G, El-Matbouli M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19010245. [PMID: 29342931 PMCID: PMC5796193 DOI: 10.3390/ijms19010245] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the advent of next-generation sequencing along with the development of various bioinformatics tools, RNA sequencing (RNA-Seq)-based transcriptome analysis has become much more affordable in the field of biological research. This technique has even opened up avenues to explore the transcriptome of non-model organisms for which a reference genome is not available. This has made fish health researchers march towards this technology to understand pathogenic processes and immune reactions in fish during the event of infection. Recent studies using this technology have altered and updated the previous understanding of many diseases in fish. RNA-Seq has been employed in the understanding of fish pathogens like bacteria, virus, parasites, and oomycetes. Also, it has been helpful in unraveling the immune mechanisms in fish. Additionally, RNA-Seq technology has made its way for future works, such as genetic linkage mapping, quantitative trait analysis, disease-resistant strain or broodstock selection, and the development of effective vaccines and therapies. Until now, there are no reviews that comprehensively summarize the studies which made use of RNA-Seq to explore the mechanisms of infection of pathogens and the defense strategies of fish hosts. This review aims to summarize the contemporary understanding and findings with regard to infectious pathogens and the immune system of fish that have been achieved through RNA-Seq technology.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| |
Collapse
|