1
|
Neuroprotective effects of curculigoside against Alzheimer’s disease via regulation oxidative stress mediated mitochondrial dysfunction in L-Glu-exposed HT22 cells and APP/PS1 mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
3
|
Li M, Wang Y, Tang Z, Wang H, Hu J, Bao Z, Hu X. Expression Plasticity of Peroxisomal Acyl-Coenzyme A Oxidase Genes Implies Their Involvement in Redox Regulation in Scallops Exposed to PST-Producing Alexandrium. Mar Drugs 2022; 20:md20080472. [PMID: 35892940 PMCID: PMC9332717 DOI: 10.3390/md20080472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.
Collapse
Affiliation(s)
- Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Zhihong Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (Y.W.); (Z.T.); (J.H.); (Z.B.); (X.H.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Hu W, Li Z, Wang W, Song M, Dong R, Zhou Y, Li Y, Wang D. Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in Alzheimer's disease: endoplasmic reticulum stress. Food Funct 2021; 12:11009-11023. [PMID: 34657936 DOI: 10.1039/d1fo01963e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) leads to progressive declines in memory and learning. This disease may arise from endoplasmic reticulum stress due to protein misfolding, which promotes inflammatory pathway activation and induces neuronal cell apoptosis. Polysaccharide is one of the main active components of the mushroom Amanita caesarea (A. caesarea) and has been proven to act as an antioxidant, immune regulatory and anti-inflammatory agent with neurodevelopmental effects. In this study, polysaccharide isolated from A. caesarea (ACPS2) was subjected to analysis to determine the main components, homogeneity and molecular weight and characterize the structure. Furthermore, APP/PS1 mice were orally treated with ACPS2 for 6 weeks. Structural characterization of ACPS2 revealed a mass average molar mass of 16.6 kDa and a structure containing a main chain and branching. In vivo, treatment with ACPS2 for 6 weeks significantly improved cognition and anxious behavior in APP/PS1 mice using Morris water maze and open-field test. Alleviation of brain injury, amyloid-β deposition and tau hyperphosphorylation were observed in ACPS2-treated AD mice. No changes in other tissues were observed. ACPS2 appeared to alleviate inflammation in vivo, as determined by decreases in the serum concentrations of tumor necrosis factor-α and interleukin-1β relative to those in non-treated mice. ACPS2 improved cholinergic system function and stabilized oxidative stress in APP/PS1 mice. Proteomics and bioinformatics analyses showed that the therapeutic effect of ACPS2 is achieved through regulation of oxidative stress-mediated endoplasmic reticulum stress. Furthermore, ACPS2 exerted anti-AD effects by regulating nuclear factor-E2-related factor 2 (Nrf2) signaling, thereby inhibiting endoplasmic reticulum stress and nuclear factor-kappa B (NF-κB) activation.
Collapse
Affiliation(s)
- Wenji Hu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun 130012, China.,Department of Pharmacy, The First Hospital of Jilin University, Jilin University, Changchun,130021, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Ti H, Mai Z, Wang Z, Zhang W, Xiao M, Yang Z, Shaw P. Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct 2021; 12:6697-6711. [PMID: 34179914 DOI: 10.1039/d1fo01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Influenza is a viral respiratory illness that causes seasonal epidemics and occasional pandemics. Disease severity may be contributed by influenza virus-induced cytokine dysregulation. The study was designed to investigate the isolation and identification of bisabolane-type sesquiterpenoids from Curcuma longa L., their antiviral and anti-inflammatory activities against H1N1 and their potential role in regulating host immune response in vitro. A pair of new bisabolane-type sesquiterpenoids, (6S,7S)-3-hydroxy-3-hydroxymethylbisabola-1,10-diene-9-one (18) together with seventeen known analogs (1-17), was isolated and elucidated from Curcuma longa L. Compounds 2, 11 and 14 could significantly inhibit A/PR/8/34 (H1N1) replication in MDCK cells, and compound 2 could significantly inhibit A/PR/8/34 (H1N1) replication in A549 cells. Compounds 4, 8, 9, 13 and 17 could markedly reduce pro-inflammatory cytokine (TNF-α, IL-6, IL-8 and IP-10) production at the mRNA and protein levels in A549 cells. Compound 4 regulated the levels of steroid biosynthesis, oxidative phosphorylation and protein processing in the endoplasmic reticulum, thereby inhibiting immune responses by proteomics analysis. Furthermore, compound 4 could inhibit the expression of p-NF-κB p65, NF-κB p65, IκBα, p-p38 MAPK, p-IκBα, RIG-1, STAT-1/2 and p-STAT-1/2 in the signaling pathways. These findings indicate that bisabolane-type sesquiterpenoids of C. longa could inhibit the expression of inflammatory cytokines induced by the virus and regulate the activity of NF-κB/MAPK and RIG-1/STAT-1/2 signaling pathways in vitro.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Qiu W, Zhang X, Zhang H, Liang C, Xu J, Gao H, Ai L, Zhao S, Wang Y, Yang Y, Zhao X. Discrimination of meat from fur-producing and food-providing animals using mass spectrometry-based proteomics. Food Res Int 2020; 137:109446. [PMID: 33233126 DOI: 10.1016/j.foodres.2020.109446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023]
Abstract
Non-edible meat from fur-producing animals entering into meat consumption chain could pose a serious threat to public health. For the purpose of risk prevention and control of meat safety, in this study, marker peptides for discriminating non-edible meat of fur-producing animals (including fox, silver fox, blue fox, raccoon dog, ussuri raccoon dog, mink and American mink) from meat of food-providing animals (including pig, cattle, sheep and donkey) were explored by shot-gun proteomics and verified by target approach. Two mass spectrometry platforms combined with bioinformatic and chemometric tools were integratedly emloyed for method development. Meat samples were first subjected to in-solution protein digestion and the subsequently tryptic peptides were profiled and quantitated by ultra-high pressure liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF MS) with sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) mode. Candidate marker peptides screened by chemometric tools were further filtered for their biological specificity and detectability through bioinformatics analysis as well as multiple reaction monitoring (MRM) verification with UHPLC-triple quadrupole mass spectrometry (UHPLC-QQQ MS). As a result, 9 peptides, out of 104 candidates, were selected as markers for discriminating analysis, of which DQTLQEELAR was validated as primary indicator of non-edible meat from the concerned fur-producing animals. An MRM method based on the developed marker peptides for routine use was finally proposed for risk alarming of non-edible meat from fur-producing animals in food safety control.
Collapse
Affiliation(s)
- Wenfeng Qiu
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China.
| | - Chengzhu Liang
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China
| | - Jie Xu
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Gao
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China
| | - Lianfeng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang, Hebei Province 050051, PR China
| | - Sa Zhao
- Technology Center of Qingdao Customs District, No.70 Qutangxia Road, Qingdao, Shandong Province 266002, PR China
| | - Yanan Wang
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Yi Yang
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Xue Zhao
- College of Food Science and Technology, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
7
|
Mi R, Rabbi MH, Sun Y, Li X, Ma S, Wen Z, Meng N, Li Y, Du X, Li S. Enhanced protein phosphorylation in Apostichopus japonicus intestine triggered by tussah immunoreactive substances might be involved in the regulation of immune-related signaling pathways. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100757. [PMID: 33197859 DOI: 10.1016/j.cbd.2020.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
The sea cucumber Apostichopus japonicus is an economically important species owing to its high nutritive and medicinal value. In order to avoid the pollution resulting from the overuse of antibiotics in A. japonicus aquaculture, various immunostimulants have been used as an alternative to improve the efficiency of A. japonicus farming. Our previous proteomic investigation has shown that several proteins participating in the immune-related physiology of A. japonicus were differentially expressed in the intestinal tissue in response to tussah immunoreactive substances (TIS). This study further explored the immunostimulation mechanism of TIS in A. japonicus. Phosphoproteomics technology was used to investigate the effect of TIS on protein phosphorylation in the intestine of A. japonicus following feeding with a TIS-supplemented diet. A total of 213 unique phosphoproteins were detected from 225 unique phosphopeptides. KEGG pathway analysis showed that majority of the phosphoproteins are involved in endocytosis, carbon metabolism and spliceosome functional group. Sixteen of the phosphoproteins exhibited differential phosphorylation in response to TIS and 12 of these were found to associate with biological functions. Of these 12 phosphoproteins, eight exhibited enhanced phosphorylation while four displayed reduced phosphorylation. These 12 proteins were further analyzed and all were found to play a role in regulating some aspects of the immune system and the growth of sea cucumbers, especially in phagocytosis, energy metabolism and disease resistance. The findings of this study could therefore shed new light on the immune pathways of sea cucumber that are affected by TIS. This could help us to better understand the underlying mechanism linked to the immunoenhancement of A. japonicus in response to TIS, one that is associated with the change in protein phosphorylation.
Collapse
Affiliation(s)
- Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Md Hasim Rabbi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116024, PR China
| | - Yongxin Sun
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China.
| | - Xuejun Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Zhixin Wen
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Nan Meng
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Yajie Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Xingfan Du
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| | - Shuying Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116024, PR China
| |
Collapse
|
8
|
Anti-inflammation of Erianin in dextran sulphate sodium-induced ulcerative colitis mice model via collaborative regulation of TLR4 and STAT3. Chem Biol Interact 2020; 324:109089. [PMID: 32272095 DOI: 10.1016/j.cbi.2020.109089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic and inflammatory disease of the rectal and colonic mucosa. Studies have shown that Toll-like receptors (TLR) 4 and Signal Transducer and Activator of Transcription 3 (STAT3)-mediated the decline in immune function and inflammatory infiltration are potential pathomechanism of UC occurrence and development. In this study, the anti-inflammation of Erianin, a natural bibenzyl compound with the antioxidant, antitumor, and anti-inflammatory activities, was investigated in a dextran sodium sulphate-induced UC mouse model. Three-week Erianin administration resulted in the increment on the body weight and colon length, and the reduction on the activity index score of UC mice. Liver, spleen, and renal organ indexes and pathological observations confirmed that Erianin was not cytotoxic and had an effect of improving immune organ function. The haematoxylin and eosin staining sections of colon tissue show Erianin's effect of reversing inflammation in the mucosal laye. Proteomic analysis and enzyme-linked immunosorbent assay indicated that Erianin regulated the levels of inflammatory and oxidative stress-related factors and immunochemokines in serum and colon tissues thereby reducing cell peroxidative damage and reducing immune inflammatory responses. Further data obtained by Western Blotting confirmed that Erianin's anti-UC activity was mediated by inhibiting the TLR4 and STAT3 signaling.
Collapse
|
9
|
Fan L, Wang L, Wang Z. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. FISH & SHELLFISH IMMUNOLOGY 2019; 92:438-449. [PMID: 31229644 DOI: 10.1016/j.fsi.2019.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
To understand the homeostasis mechanism of crustacean hepatopancreas to cold stress, iTRAQ proteomics based on the genome database of Litopenaeus vannamei (L. vannamei) was applied to investigate proteins changes and variety of the hepatopancreas during cold stress stage in this study. A total of 4062 distinct proteins were identified, 137 differentially expressed proteins (DEPs) including 62 differentially up-regulated proteins (DUPs) and 75 differentially down-regulated proteins (DDPs) were identified in G1 (18 °C) compared with CK (28 °C), 359 DEPs including 131 DUPs and 228 DDPs were identified in G2 (13 °C for 24 h) compared with CK. Based on bioinformatics analysis, the cold tolerance of L. vannamei might be related to energy metabolism such as amino acid, carbohydrate, lipid, and oxidative phosphorylation. Moreover, shrimp immunity was declined during cold stress stage. However, L. vannamei could cope with cold stress by enhancing the production of ATP and UFA. Notably, arginine kinase, heat shock proteins, and histones may act as positive regulators in L. vannamei under cold stress. Ten randomly selected proteins were used for validation using qRT-PCR and the expressions on the transcription level for most of the genes were similar to the results of iTRAQ. These results indicated that L. vannamei can maintain the organism homeostasis by a series of orderly regulatory process during cold stress. Furthermore, the results can provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| | - Lei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Zhang H, Zhang X, Zhao X, Xu J, Lin C, Jing P, Hu L, Zhao S, Wang X, Li B. Discrimination of dried sea cucumber (Apostichopus japonicus) products from different geographical origins by sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomic analysis and chemometrics. Food Chem 2019; 274:592-602. [DOI: 10.1016/j.foodchem.2018.08.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
|