1
|
Luo K, Yu X, Wang J, Liu J, Li X, Pan M, Huang D, Mai K, Zhang W. Ascorbic acid biosynthesis in Pacific abalone Haliotis discus hannai Ino and L-gulonolactone oxidase gene loss as an independent event. Int J Biol Macromol 2024; 268:131733. [PMID: 38649080 DOI: 10.1016/j.ijbiomac.2024.131733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Up to now, it has been believed that invertebrates are unable to synthesize ascorbic acid (AA) in vivo. However, in the present study, the full-length CDs (Coding sequence) of L-gulonolactone oxidase (GLO) from Pacific abalone (Haliotis discus hannai Ino) were obtained through molecular cloning. The Pacific abalone GLO contained a FAD-binding domain in the N-termination, and ALO domain and conserved HWAK motif in the C-termination. The GLO gene possesses 12 exons and 11 introns. The Pacific abalone GLO was expressed in various tissues, including the kidney, digestive gland, gill, intestine, muscle and mantle. The GLO activity assay revealed that GLO activity was only detected in the kidney of Pacific abalone. After a 100-day feeding trial, dietary AA levels did not significantly affect the survival, weight gain, daily increment in shell length, and feed conversion ratio of Pacific abalone. The expression of GLO in the kidney was downregulated by dietary AA. These results implied that the ability to synthesize AA in abalone had not been lost. From the evolutionary perspective, the loss of GLO occurred independently as an independent event by matching with the genomes of various species. The positive selection analysis revealed that the GLO gene underwent purifying selective pressure during its evolution. In conclusion, the present study provided direct evidence to prove that the GLO activity and the ability to synthesize AA exist in abalone. The AA synthesis ability in vertebrates might have originated from invertebrates dating back 930.31 million years.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, PR China
| | - Xiaojun Yu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jia Wang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs); Key Laboratory of Mariculture (Ministry of Education); Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Ding G, Yu P, Deng D, Xie M, Luo K, Zhang F, Xu D, Xu Q, Guo H, Zhang S. Functional characterization of group Ⅱ interferon, IFNf in the acipenseriform fish, Chinese sturgeon (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109240. [PMID: 38008344 DOI: 10.1016/j.fsi.2023.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Teleost fish possess a diversity of type Ⅰ interferons (IFNs) repertoire, which play a crucial role in antiviral and antimicrobial immune responses. In our previous study, IFNe1-3 and IFNb were identified and cloned from Chinese sturgeon (Acipenser sinensis), an acipenseriform fish. However, the absence of Chinese sturgeon genome data has left the question of whether there are other type Ⅰ IFN members in this species unresolved. In this study, we have identified and characterized a novel IFN, IFNf in Chinese sturgeon (AsIFNf). Bioinformatics analysis revealed that the AsIFNf contains a unique disulfide bond (2 cysteines) located in the second exon and fifth exon region, distinguishing it from other reported teleost type I IFNs. Meanwhile, qPCR results showed that AsIFNf mRNA was detectable in all examined tissues and up-regulated in the spleen or kidney in response to poly I: C, Citrobacter freundii, and Spring Viremia of Carp Virus (SVCV), but not by LPS. Furthermore, compared to recombinant AsIFNe2 protein (rAsIFNe2), rAsIFNf exhibited a stronger protective effect on Chinese sturgeon fin cells against SVCV and also induced higher expression of antiviral genes Mx and viperin. Importantly, AsIFNf displayed characteristics similar to antimicrobial peptides (AMPs) with a positive charge and demonstrated a broad spectrum of antimicrobial activity in vitro. These findings provide a theoretical foundation for understanding the primitive structure and function of interferon, as well as deepening our comprehension of the innate immune system and disease defense in the endangered Chinese sturgeon.
Collapse
Affiliation(s)
- Guangyi Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Peipei Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Meng Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Kai Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Fuxian Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dingda Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, China
| | - Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China.
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
3
|
Xu Q, Deng D, Guo H, Yuan H, Zhang W, Wang B, Lu Y, Chen D, Zhang S. Comprehensive comparison of thirteen kinds of cytokine receptors from the endangered fish Chinese sturgeon (Acipenser sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104132. [PMID: 34038788 DOI: 10.1016/j.dci.2021.104132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The interferon receptor system in teleost fish is more complex than that in mammals. In the present study, we identified 13 cytokine receptor genes (10 interferon receptor genes and 3 IL10R2-like genes) from Chinese sturgeon (Acipenser sinensis) using RNA-sequencing. Sequence analysis indicated that these receptors had conserved domains, including signal peptides, FNⅢ, and transmembrane domains. Phylogenetic analysis suggested that they belonged to the cytokine receptor family. In the present study, we named them IFNAR1-like (CRFB5a, CRFB5b), IFNAR2-like (CRFB3a, CRFB3b), IFNGR1-like (IFNGR1), IFNGR2-like (CRFB6a, CRFB6b/IFNGR2-1, CRFB6c/IFNGR2-2, CRFB6d/IFNGR2-3, CRFB6e/IFNGR2-4) and IL10R2-like (CRFB4a, CRFB4b, CRFB4c), respectively. Constitutive expression analysis revealed that these receptor genes had potential functions in immune and non-immune tissue compartments. After stimulating with Poly (I:C), the expression fold changes of CRFB3a, CRFB4a, CRFB4b, CRFB5b, and CRFB6e/IFNGR2-4 in Chinese sturgeon were higher than those of other receptor genes, which revealed that these five genes had important functions in the immune process to resist virus invasion in the host. After stimulating with IFN gamma, the expression fold changes of CRFB3a, CRFB4a, and CRFB6b/IFNGR2-1 were higher than those other receptor genes. Based on other teleost fish interferon receptor models, we speculated that IFNAR1-like (CRFB5a, CRFB5b) and IFNAR2-like (CRFB3a, CRFB3b), comprised Chinese sturgeon type Ⅰ IFN receptors; and IFNGR1-like (IFNGR1) and IFNGR2-like (CRFB6/IFNGR2) comprised Chinese sturgeon type Ⅱ IFN receptors.
Collapse
Affiliation(s)
- Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China.
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Hanwen Yuan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Wenbing Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Bei Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Yishan Lu
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Dunxue Chen
- Research Center of Fishery Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
4
|
Luo K, Li X, Wang L, Rao W, Wu Y, Liu Y, Pan M, Huang D, Zhang W, Mai K. Ascorbic Acid Regulates the Immunity, Anti-Oxidation and Apoptosis in Abalone Haliotis discus hannai Ino. Antioxidants (Basel) 2021; 10:1449. [PMID: 34573080 PMCID: PMC8465606 DOI: 10.3390/antiox10091449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to investigate the roles of ascorbic acid (AA) in immune response, anti-oxidation and apoptosis in abalone (Haliotis discus hannai Ino). Seven semi-purified diets with graded levels of AA (0, 50, 100, 200, 500, 1000 and 5000 mg/kg) were fed to abalone (initial weight: 12.01 ± 0.001 g, initial shell length: 48.44 ± 0.069 mm) for 100 days. The survival, weight gain rate and daily increment in shell length were not affected by dietary AA. The AA content in the gill, muscle and digestive glands of abalone was significantly increased by dietary AA. In terms of immunity, dietary AA significantly improved the total hemocyte count, respiratory burst and phagocytic activity in hemolymph, and lysozyme activity in cell-free hemolymph (CFH). In the digestive gland, the TLR-MyD88-dependent and TLR-MyD88-independent signaling pathways were suppressed by dietary AA supplementation. The mRNA levels of β-defensin and arginase-I in the digestive gland were significantly increased by dietary AA. In the gill, only the TLR-MyD88-dependent signaling pathway was depressed by dietary AA to reduce inflammation in abalone. The level of mytimacin 6 in the gill was significantly upregulated by dietary AA. After Vibrio parahaemolyticus infection, the TLR signaling pathway in the digestive gland was suppressed by dietary AA, which reduced inflammation in the abalone. In terms of anti-oxidation, superoxide dismutase, glutathione peroxidase and catalase activities, as well as total anti-oxidative capacity and reduced glutathione content in CFH, were all significantly upregulated. The malondialdehyde content was significantly downregulated by dietary AA. The anti-oxidative capacity was improved by triggering the Keap1-Nrf2 pathway in abalone. In terms of apoptosis, dietary AA could enhance the anti-apoptosis ability via the JNK-Bcl-2/Bax signaling cascade in abalone. To conclude, dietary AA was involved in regulating immunity, anti-oxidation and apoptosis in abalone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.L.); (X.L.); (L.W.); (W.R.); (Y.W.); (Y.L.); (M.P.); (D.H.); (K.M.)
| | | |
Collapse
|
5
|
Clouthier S, Caskenette A, Van Walleghem E, Schroeder T, Macdonald D, Anderson ED. Molecular phylogeny of sturgeon mimiviruses and Bayesian hierarchical modeling of their effect on wild Lake Sturgeon (Acipenser fulvescens) in Central Canada. INFECTION GENETICS AND EVOLUTION 2020; 84:104491. [PMID: 32763443 DOI: 10.1016/j.meegid.2020.104491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Sturgeon mimiviruses can cause a lethal disease of the integumentary systems of sturgeon (Acipenseridae). Here we provide phylogeographic evidence that sturgeon mimivirus is endemic in endangered populations of wild Lake Sturgeon within Canada's Hudson Bay drainage basin. Namao virus (NV) variants were diagnosed in 24% of Lake Sturgeon samples (n = 1329) collected between 2010-2015. Lake Sturgeon populations with the highest virus prevalence were from the Nelson River (58%) in 2015, Saskatchewan River (41%) in 2010 and South Saskatchewan River (36%) in 2011. Bayesian phylogenetic reconstructions suggested that four NV variants, designated HBDB I-IV, co-circulate temporally and spatially within and between the genetically and biogeographically distinct Lake Sturgeon populations. Evidence from recapture studies suggested that Lake Sturgeon across the basin are persistently infected with NV at prevalence and titer (103.6 equivalent plasmid copies per μg DNA) levels consistent with the hypothesis that wild Lake Sturgeon populations serve as a maintenance population and reservoir for sturgeon mimiviruses. Bayesian hierarchical modeling of NV in the Landing River population of Lake Sturgeon suggested that host weight and age were the best predictors of sturgeon mimivirus presence and titer, respectively, whereas water flow rate, level and temperature, and number of previous captures did not significantly improve model fit. A negative relationship was estimated between sturgeon mimivirus presence and Lake Sturgeon weight and between virus titer and Lake Sturgeon age.
Collapse
Affiliation(s)
- Sharon Clouthier
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Amanda Caskenette
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Elissa Van Walleghem
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Tamara Schroeder
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Don Macdonald
- Department of Sustainable Development, Province of Manitoba, Box 28, 59 Elizabeth Drive, Thompson, Manitoba R8N 1X4, Canada.
| | | |
Collapse
|
6
|
Liu F, Wang T, Petit J, Forlenza M, Chen X, Chen L, Zou J, Secombes CJ. Evolution of IFN subgroups in bony fish - 2. analysis of subgroup appearance and expansion in teleost fish with a focus on salmonids. FISH & SHELLFISH IMMUNOLOGY 2020; 98:564-573. [PMID: 32001354 DOI: 10.1016/j.fsi.2020.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A relatively large repertoire of type I interferon (IFN) genes is apparent in rainbow trout/Atlantic salmon, that includes six different IFN subgroups (IFNa-IFNf) belonging to the three known type I IFN groups (1-3) in bony fish. Whether this is true for other salmonids, and how the various type I subgroups evolved in teleost fish was studied using the extensive genomic resources available for fish. This confirmed that salmonids, at least the Salmoninae, indeed have a complex (in terms of IFN subgroups present) and large (number of genes) IFN repertoire relative to other teleost fish. This is in part a consequence of the salmonid 4 R WGD that duplicated the growth hormone (GH) locus in which type I IFNs are generally located. Divergence of the IFN genes at the two GH loci was apparent but was not seen in common carp, a species that also underwent an independent 4 R WGD. However, expansion of IFN gene number can be found at the CD79b locus of some perciform fish (both freshwater and marine), with expansion of the IFNd gene repertoire. Curiously the primordial gene order of GH-IFNc-IFNb-IFNa-IFNe is largely retained in many teleost lineages and likely reflects the tandem duplications that are taking place to increase IFN gene number. With respect to the evolution of the IFN subgroups, a complex acquisition and/or loss has occurred in different teleost lineages, with complete loss of IFN genes at the GH or CD79b locus in some species, and reduction to a single IFN subgroup in others. It becomes clear that there are many variations to be discovered regarding the mechanisms by which fish elicit protective (antiviral) immune responses.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Jules Petit
- Wageningen University & Research, Aquaculture and Fisheries Group, Department of Animal Science, 6708WD, Wageningen, the Netherlands
| | - Maria Forlenza
- Wageningen University & Research, Cell Biology & Immunology Group, Department of Animal Science, 6708WD, Wageningen, the Netherlands
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK.
| |
Collapse
|
7
|
Tian B, Tang D, Wu J, Liang M, Hao D, Wei Q. Molecular characterization, expression pattern and evolution of nine suppressors of cytokine signaling (SOCS) gene in the swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2020; 96:177-189. [PMID: 31811887 DOI: 10.1016/j.fsi.2019.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Suppressors of cytokine signaling (SOCS) family members have negative effects on cytokine signaling pathways involved in immunity, growth and development. Owing to their typical feature, they have been extensively studied in mammalians, but they have not offered systematic studies among teleosts. In the present study, nine SOCS family genes were identified in the swamp eel genome and analyzed regulation mechanisms of SOCS family members in swamp eels. The open reading frames of MaSOCS1a, MaSOCS1b, MaSOCS2, MaSOCS3a, MaSOCS3b, MaSOCS4, MaSOCS5, MaSOCS6 and MaSOCS7 were 663 bp, 603 bp, 717 bp, 618 bp, 645 bp, 1188 bp, 1488 bp, 1611 bp and 1998 bp and encoded 220, 238, 200, 205, 214, 395, 496, 536 and 655 amino acids, respectively. All SOCS proteins have no signal peptides. Multiple alignment revealed that MaSOCS family members possessed a typical conserved SOCS box and SH2 region. Phylogenetic analyses showed that all SOCS proteins were divided into two main clusters. Taken together with the similarity and identity of SOCS protein amino acids, these results indicated that MaSOCS family members shared conserved with other homologous genes, in which MaSOCS7 was more conserved. Further syntenic analysis confirmed the phylogenetic analysis results and annotation of SOCS protein, suggesting that MaSOCS5 shared a common ancestor gene with that of fish and humans. MaSOCS family members were constitutively expressed in a wide range of tissues with different levels. In particular, spleen and head kidneys play an important role in immune-related pathways. After Aeromonas veronii and polyinosinic-polycytidylic acid (poly I:C) challenge in the spleen and head kidney, MaSOCS family members exhibit different expression profiles. These expression patterns indicated that MaSOCS family members could make acute responses after pathogen invasion. Taken together, these results indicate that MaSOCS family members participate in the immune response against pathogens and offer a solid foundation for future studies of SOCS function.
Collapse
Affiliation(s)
- Bo Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, 434020, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, 434020, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Meng Liang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Du Hao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
8
|
Yuan H, Li Y, Tian G, Zhang W, Guo H, Xu Q, Wang T. Identification and characterization of three CXC chemokines in Asian swamp eel (Monopterus albus) uncovers a third CXCL11_like group in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103454. [PMID: 31326565 DOI: 10.1016/j.dci.2019.103454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Chemokines direct cell migration in development and immune defense, and bridge between innate and adaptive immune responses. The chemokine gene family has been rapidly evolving and has undergone species/lineage-specific expansion. Mammals possess inflammatory CXC chemokines CXCL1-8/15 and CXCL9-11 sub-groups, and homeostatic CXCL12-14, 16-17. Orthologues of mammalian CXCL12-14, three chemokines related to CXCL1-8/15 (CXCL8_L1-3), two chemokines related to CXC9-11 (CXCL11_L1-2), and five fish-specific chemokines (CXCL_F1-5) have been described in teleosts. In this study, we reported three novel CXC chemokines in Asian swamp eel Monopterus albus, a commercially important freshwater fish species in China. Two of them belong to the fish-specific CXCL_F2 group, named CXCL_F2a/b, that share 89.5% amino acid identity. The other (CXCL11_L3) belongs to a third CXCL11_L related to the mammalian CXCL9-11 subfamily found only in percomorph fish species, and is the only CXCL9-11 related molecules in this lineage. Mammalian CXCL9-11 attract Th1 cells, and block the migration of Th2 cells in an immune response. This study suggests that all major lineages of teleosts have a CXCL9-11 related chemokine that will aid future functional investigation of CXCL11_L in fish. Cxcl_f2a is highly expressed constitutively in the skin of swamp eels that may attract immune cells to protect the skin in the absence of scales. Cxcl11_l3 and cxcl_f2b are highly expressed in immune tissues/organs and are up-regulated by the viral mimic poly I:C, but not bacterial infection in vivo, suggesting their role in anti-viral defense. The two cxcl_f2 paralogues are differentially expressed and modulated, indicating sub- and/or neo-functionalization.
Collapse
Affiliation(s)
- Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, PR China
| | - Youshen Li
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Huizhi Guo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, PR China.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
9
|
Liu F, Bols NC, Pham PH, Secombes CJ, Zou J. Evolution of IFN subgroups in bony fish - 1:Group I-III IFN exist in early ray-finned fish, with group II IFN subgroups present in the Holostean spotted gar, Lepisosteus oculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 95:163-170. [PMID: 31626921 DOI: 10.1016/j.fsi.2019.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The present study helps clarify when the fish type I IFN groups/subgroups evolved, by examination of the IFN genes present in the Holostean spotted gar, Lepisosteus oculatus, in relation to the IFN genes present in the Chondrostea (sturgeon). It confirms that all three IFN groups (I-III), and group II subgroups, existed prior to the appearance of teleost fish. Preliminary expression analysis in a gar cell line (GARL) suggests these IFN genes will have a role in antiviral defence in Holostean fish, in that they are induced by poly(I:C). A refined model of IFN evolution within the actinopterygian fish is proposed.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
10
|
Di J, Chu Z, Zhang S, Huang J, Du H, Wei Q. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:711-719. [PMID: 31419532 DOI: 10.1016/j.fsi.2019.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we aimed to screen the potential probiotic Bacillus subtilis isolated from the gut of healthy fish using in vitro assays and to evaluate its effect on Dabry's sturgeon (Acipenser dabryanus) using in vivo feeding experiments. Among the isolates, B. subtilis BSth-5 and BSth-19 exhibited antimicrobial effect against four sturgeon-pathogenic bacteria, including Aeromonas hydrophila, A. veronii, A. media, and Streptococcus iniae. The cell number of B. subtilis BSth-5 and BSth-19 changed little after 2 h of exposure to pH 3.0 or fresh Dabry's sturgeon bile at 2.5% and 5.0%. Meanwhile, B. subtilis BSth-5 and BSth-19 produced extracellular protease, cellulose, and lipase. And it was proved that B. subtilis BSth-5 and BSth-19 were harmless after injection of Dabry's sturgeon. One group of Dabry's sturgeon was fed a control diet and two groups were fed experimental diets containing 2.0 × 108 CFU/g BSth-5 (T1 group) or BSth-19 (T2 group) for 8 weeks. No significant differences in final weight, weight gain rate, and special growth rate were observed in the T1 and T2 groups compared to the control group (P > 0.05), but a significant improvement in survival rate was detected after 4 and 8 weeks of feeding (P < 0.05). After 8 weeks, serum total antioxidant capacity, total superoxide dismutase activity, and IgM levels were significantly higher in the T1 and T2 groups compared to the control group (P < 0.05). Moreover, serum lysozyme activity was significantly higher in the T1 group relative to the control group during the whole experiment period (P < 0.05); however, the differences were not significant between the T2 and control groups (P > 0.05). Serum malondialdehyde levels in the T1 and T2 groups were significantly lower than those in the control group after 4 weeks (P < 0.05). Sturgeons in the T1 and T2 groups showed a higher survival rate after Aeromonas hydrophila infection. To summarize, dietary supplementation with BSth-5 and BSth-19 could enhance the survival rate, antioxidant activity, serum immunity, and disease resistance in A. dabryanus.
Collapse
Affiliation(s)
- Jun Di
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education of China, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhipeng Chu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shuhuan Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jun Huang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education of China, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
11
|
Tang D, Wu S, Luo K, Yuan H, Gao W, Zhu D, Zhang W, Xu Q. Sequence characterization and expression pattern analysis of six kinds of IL-17 family genes in the Asian swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:257-270. [PMID: 30922887 DOI: 10.1016/j.fsi.2019.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-17 (IL-17) is an important cytokine that plays a critical role in the inflammatory response and host defense against extracellular pathogens. In the present study, six novel IL-17 family genes (MaIL-17) were identified by analyzing Asian swamp eel (Monopterus albus) genome. Sequence analysis revealed that the MaIL-17 family genes shared similar features, comprising a signal peptide, an IL-17 superfamily region, and four conserved cysteines. Phylogenetic analysis showed that the MaIL-17 genes were clustered together with their corresponding IL-17 genes from other species. The similarity and identity of all IL-17 family genes indicated that the MaIL-17 genes are conserved among teleosts, while Ma-IL-17D is more conserved than the other Ma-IL-17s. Except for MaIL-17A/F3 and MaIL-17D, all MaIL-17s shared the same genomic structure as the genes from other fish, namely three exons and two introns. The MaIL-17s showed conserved synteny among fish, and we found that the MaIL-17D locus has a more conserved syntenic relationship with the loci from other fish and humans. These results demonstrated that MaIL-17D and human IL-17D might have evolved from a common ancestral gene and subsequently diverged. The analysis of swamp eel reference genes revealed that EEF1A1 (encoding eukaryotic translation elongation factor 1 alpha 1) was an ideal reference gene for accurate real-time qRT-PCR normalization in the swamp eel. The MaIL-17 genes are widely distributed throughout tissues, suggesting that MaIL-17s carry out their biological functions in immune and non-immune tissues compartments. The transcript of Ma-IL17s exhibited different fold changes in head kidney cells in response to Aeromonas veronii phorbol 12-myristate 13-acetate (PMA) and polyinosinic:polycytidylic acid (poly I:C) challenge, showing that MaIL-17A/F1 has stronger antiviral activities compared with other MaIL-17 family genes, and that MaIL-17A/F3 and MaIL-17A/F2 possess stronger effects against extracellular pathogens compared with the others; however, MaIL-17C2 and MaIL-17D may play vital roles during pathogen infection. The differential immune responses of these genes to Aeromonas veronii, PMA and poly I:C implied distinct mechanisms of host defense against extracellular pathogens.
Collapse
Affiliation(s)
- Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China
| | - Shipei Wu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Dashi Zhu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China.
| |
Collapse
|