1
|
Dawar FU, Shi Y, Zhou Y, Jin X, Zhao Z. Bacterial infection-biased abundance of proteins in the skin mucus of obscure puffer (Takifugu Obscurus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101306. [PMID: 39116716 DOI: 10.1016/j.cbd.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The skin mucus of fish is equipped with immunological and antimicrobial peptides that confer protection against invading pathogens. The skin mucus has been studied in fish however information regarding its immunological roles in bacterial infection is rare. This study highlighted the proteins and peptides in the skin mucus of Obscure puffer Takifugu obscurus that quantitatively altered against Aeromonas hydrophila infection. We infected the fish through bath immersion, intraperitonially, and treated with PBS (control) then compared the level of proteins in the skin mucus among the groups using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The Tandem Mass Tag (TMT) based quantification showed that 4896 proteins were Deferentially Quantified Proteins (DQPs), based on 19,751 unique peptides. Of which 170 were depleted (decreased in abundance) and 69 were abundant in comparison of Bath Treated (BT) vs Control (C) groups. Similarly, 76 DQPs were depleted and 70 were abundant in comparison of Treated (T) vs BT groups. Further, 126 DQPs were depleted, and 34 were abundant in comparison to T vs C groups. The DQPs we report were mostly immunological and were involved in unique biological functions and pathways. The interesting protein we report, where some of the proteins are for the first time in fish, shows the protein-rich structure of the mucus of fish, which may act as a biomarker to be targeted for bacterial disease therapy in fish and ultimately hint to the way of making resistance in fish against bacterial pathogens.
Collapse
Affiliation(s)
- Farman Ullah Dawar
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China; Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yu Zhou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China.
| |
Collapse
|
2
|
Qu SY, Liu YH, Liu JT, Li PF, Liu TQ, Wang GX, Yu Q, Ling F. Catechol compounds as dual-targeting agents for fish protection against Ichthyophthirius multifiliis infections. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109717. [PMID: 38914179 DOI: 10.1016/j.fsi.2024.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Aquaculture is one of the fastest growing sectors in global food production, recognized as a significant contributor to poverty alleviation, food security, and income generation. However, the frequent occurrence of diseases caused by pathogen infections result in reduced yields and economic losses, posing a substantial constraint to the sustainable development of aquaculture. Here, our study identified that four catechol compounds, quercetin, luteolin, caffeic acid, and chlorogenic acid, exhibited potent antiparasitic effects against Ichthyophthirius multifiliis in both, in vitro and in vivo. The parasite is recognized as one of the most pathogenic to fish worldwide. Using a combination of in silico methods, the dipeptidyl peptidase (DPP) was identified as a critical target for catechol compounds. The two hydroxyl radicals of the catechol group were essential for its binding to and interacting with the DPP protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that catechol compounds disrupt pathways associated with the metabolism and growth of I. multifiliis, thereby exerting antiparasitic effects. Furthermore, these compounds attenuated the expression of proinflammatory cytokines in vivo in fish and promoted macrophage polarization toward M2 phenotype by inhibiting the STAT1 signaling pathway. The dual activity of catechol compounds, acting as both direct antiparasitic and anti-inflammatory agents in fish, offers a promising therapeutic approach for combating I. multifiliis infections in aquaculture.
Collapse
Affiliation(s)
- Shen-Ye Qu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi-Hang Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie-Tao Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng-Fei Li
- Guangxi Academy of Sciences, Nanning, 530000, China
| | - Tian-Qiang Liu
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qing Yu
- Guangxi Academy of Sciences, Nanning, 530000, China.
| | - Fei Ling
- Northwest A&F University, Xinong Road, Yangling, Shaanxi, 712100, China; Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Saleh M, Hummel K, Schlosser S, Razzazi-Fazeli E, Bartholomew JL, Holzer A, Secombes CJ, El-Matbouli M. The myxozoans Myxobolus cerebralis and Tetracapsuloides bryosalmonae modulate rainbow trout immune responses: quantitative shotgun proteomics at the portals of entry after single and co-infections. Front Cell Infect Microbiol 2024; 14:1369615. [PMID: 38803570 PMCID: PMC11129561 DOI: 10.3389/fcimb.2024.1369615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.
Collapse
Affiliation(s)
- Mona Saleh
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Karin Hummel
- VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Astrid Holzer
- Division of Fish Health, University of Veterinary Medicine, Vienna, Austria
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, United Kingdom
| | | |
Collapse
|
4
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
5
|
Chen F, Zhang W, Xu X, Gui L, Lin Y, Wu M, Li J, Shen Y. Identification of Genes Related to Resistance to Ichthyophthirius multifiliis Based on Co-expression Network Analysis in Grass Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:824-836. [PMID: 37610535 DOI: 10.1007/s10126-023-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The ciliate protozoan Ichthyophthirius multifiliis is an essential parasite causing white spot disease in grass carp, leading to significant economic losses. Understanding the molecular basis of grass carp's response to I. multifiliis has important scientific and environmental values. The transcriptional network analysis offers a valuable strategy to decipher the changes in gene expression in grass carp infected with I. multifiliis. Our goal was to screen the genes and pathways involved in resistance to I. multifiliis in grass carp. The different traits exhibited by grass carp infected with I. multifiliis may be caused by the differences in gene expression among grass carp individuals. Herein, to reveal those resistance-associated genes against I. multifiliis infection, we performed RNA sequencing using weighted gene co-expression network analysis (WGCNA). The biological function analysis and hub gene annotation for highly relevant modules revealed that different pathogen recognition and clearance responses resulted in different resistance to I. multifiliis infection. Furthermore, gene enrichment analysis revealed that I. multifiliis invasion in the disease-resistant group mainly activated immune pathways, including scavenger receptor activity and kappa B kinase/NF-kappa B signaling. By the annotation of the highly correlated module of the hub gene, we revealed that the apoptosis and ribosome biogenesis-related genes were enriched in the disease-resistant grass carp. The results of the dark grey module showed that several genes were mainly enriched in the two-component system (ko02020) and steroid biosynthesis (ko00100), suggesting that they are resistance-associated and energy metabolism-associated genes. In the disease resistance group, hub genes mainly included Nlrc3, fos, AAP8, HAP2, HAX, cho2, and zgc:113,036. This study revealed the gene network associated with disease resistance after I. multifiliis infection. The disease resistance-related pathways and central genes identified in this study are candidate references for breeders breeding disease-resistant. The results of this study may also provide some references for the development of drugs to antagonize I. multifiliis infection.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanfeng Lin
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Minglin Wu
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Shahbazi P, Sheikhzadeh N, Siahtan MAN, Ghadimi AK, Soltani M, Nofouzi K, Mousavi S, Khordadmehr M, Marandi A, Firouzamandi M. Efficacy of dietary live or heat-killed Bacillus subtilis in goldfish (Carassius auratus) infected with Ichthyophthirius multifiliis. Vet Med Sci 2023. [PMID: 37392468 DOI: 10.1002/vms3.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND The beneficial effects of Bacillus subtilis on growth, immune response, and disease resistance against various diseases in different fish species have been proved. However, there are no data concerning this probiotic effect on skin mucosal immunity in fish infected with Ichthyophthirius multifiliis (Ich). Ich has a high mortality rate in both edible and ornamental fish and consequently is concerned with heavy economic losses. OBJECTIVES Thus, we assessed the efficacy of live and heat-killed B. subtilis on skin immunity and histopathology in goldfish (Carassius auratus) infected with Ich. METHODS Goldfish (144 fish, 2.38 g average weight) were stocked in nine glass tanks each in three replicates. Fish were fed 109 CFU g-1 live or heat-killed B. subtilis for 80 days. RESULTS Probiotic administration in both viable and non-viable forms could enhance the growth performance in goldfish. Probiotic therapy also reduced the density of the parasite and histopathological level on skin and gill tissues of the treated fish. Real-time polymerase chain reaction analysis showed a higher expression of lysozyme and tumour necrosis factor-α in the treated groups compared to the control group. CONCLUSIONS These data demonstrated the beneficial effect of B. subtilis as probiotic and paraprobiotic on growth performance and disease resistance to Ich infestation in goldfish.
Collapse
Affiliation(s)
- Parisa Shahbazi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Amin Keshavarz Ghadimi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Australia
| | - Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shalaleh Mousavi
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amin Marandi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Saleh M, Abdel-Baki AAS, Dkhil MA, El-Matbouli M, Al-Quraishy S. Silencing of heat shock protein 90 (hsp90): Effect on development and infectivity of Ichthyophthirius multifiliis. BMC Vet Res 2023; 19:62. [PMID: 36932404 PMCID: PMC10024447 DOI: 10.1186/s12917-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Recently, an increasing number of ichthyophthiriasis outbreaks has been reported, leading to high economic losses in fisheries and aquaculture. Although several strategies, including chemotherapeutics and immunoprophylaxis, have been implemented to control the parasite, no effective method is available. Hence, it is crucial to discover novel drug targets and vaccine candidates against Ichthyophthirius multifiliis. For this reason, understanding the parasite stage biology, host-pathogen interactions, molecular factors, regulation of major aspects during the invasion, and signaling pathways of the parasite can promote further prospects for disease management. Unfortunately, functional studies have been hampered in this ciliate due to the lack of robust methods for efficient nucleic acid delivery and genetic manipulation. In the current study, we used antisense technology to investigate the effects of targeted gene knockdown on the development and infectivity of I. multifiliis. Antisense oligonucleotides (ASOs) and their gold nanoconjugates were used to silence the heat shock protein 90 (hsp90) of I. multifiliis. Parasite stages were monitored for motility and development. In addition, the ability of the treated parasites to infect fish and cause disease was evaluated. RESULTS We demonstrated that ASOs were rapidly internalized by I. multifiliis and distributed diffusely throughout the cytosol. Knocking down of I. multifiliis hsp90 dramatically limited the growth and development of the parasite. In vivo exposure of common carp (Cyprinus carpio) showed reduced infectivity of ASO-treated theronts compared with the control group. No mortalities were recorded in the fish groups exposed to theronts pre-treated with ASOs compared with the 100% mortality observed in the non-treated control fish. CONCLUSION This study presents a gene regulation approach for investigating gene function in I. multifiliis in vitro. In addition, we provide genetic evidence for the crucial role of hsp90 in the growth and development of the parasite, suggesting hsp90 as a novel therapeutic target for successful disease management. Further, this study introduces a useful tool and provides a significant contribution to the assessing and understanding of gene function in I. multifiliis.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | | | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
- Scchool of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Zhao N, Jia L, Wang Q, Deng Q, Ru X, Zhu C, Zhang B. The feasibility of skin mucus replacing exosome as a pool for bacteria-infected markers development via comparative proteomic screening in teleost. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108483. [PMID: 36509412 DOI: 10.1016/j.fsi.2022.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In fish, skin mucus forms a protective barrier between the body surface and the external water environment, thus providing the most direct and intuitive clues to monitor the subject's health condition. To explore the impact of the Vibrio harveyi pathogen on teleost, the proteome of epidermal mucus from control and sick Cynoglossus semilaevis were screened through iTRAQ followed with LC-MS/MS. 1531 credible proteins were obtained relating to structural, metabolic and immunological functions. 335 different expressed proteins (DEPs) were identified, with 166 up-regulated and 169 down-regulated in MS. 62 proteins were characterized, including 22 up-regulated proteins and 40 down-regulated proteins. Integrated analysis of DE-miRNAs and DEPs from miRomics and proteomics were conducted to show the indirect regulatory relationship. Comparative analysis of DEPs between mucus and exosomes demonstrated that exosomes contributed the most DEPs of all mucus DEPs. 125 proteins are DEPs only in exosomes, which presented minor difference in total mucus. Expression of Aminopeptidase (anpep), Calcium-transporting ATPase, Histone H2B and H2A confirmed implied fine discriminative power with infected C. semilaevis, among which Calcium-transporting ATPase and H2B also appeared in list of exosomal markers. This study might shed the light on effective biomarker digging at other extended screening scenarios.
Collapse
Affiliation(s)
- Na Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Qiumei Wang
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Qiuxia Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Xiaoying Ru
- Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Bo Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang, 524000, China.
| |
Collapse
|
9
|
Wu H, Gao J, Xie M, Xiang J, Zuo Z, Tian X, Song R, Yuan X, Wu Y, Ou D. Histopathology and transcriptome analysis reveals the gills injury and immunotoxicity in gibel carp following acute deltamethrin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113421. [PMID: 35304335 DOI: 10.1016/j.ecoenv.2022.113421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
More and more evidences proved that deltamethrin (Del) exposure induced adverse effects and damaged immune function to the aquatic animals in the parasite killing process with increasing insecticide application. However, little is currently known of the negative effect on mucosal immunity, especially in gills tissue. Therefore, this study was aimed to reveal the tissue injury and immunotoxicity in the gill of gibel carp following acute deltamethrin exposure. The LC50 of deltamethrin on gibel carp at 96 h was determined to be 6.194 μg/L, and then juvenile gibel carp (Carassius auratus gibelio) (8.8 ± 1.0 g) were exposed to four Del exposure groups (0.61, 1.22, 2.44, and 4.88 μg/L) for 12 h and 24 h. We measured the lysozyme (LYZ) contents and myeloperoxidase (MPO) activities and found that with increased concentration of Del exposure, the LYZ contents were found to increase in the 1.22 μg/L Del group initially significantly and then gradually significantly decrease in the 4.88 μg/L Del group. And the activities of MPO were significantly lifted in a dose-dependent manner. The histological analysis showed that Del exposure caused serious desquamation and necrosis in the surface of epithelial cells, accompanied by interlamellar cellular mass degenerative. In addition, the mucous cells were significantly decreased in the high Del concentration group (2.44 μg/L and 4.88 μg/L Del group) by AB-PAS staining. Additionally, totally 2857 DEGs (including 1624 up-regulated and 1233 down-regulated genes) were identified between the control group and 4.88 μg/L Del exposure group using transcriptional analysis. Among these, some genes involved in innate immune molecules, complement activation, apoptosis-related molecules, cytokine, and adaptive immune molecules, were also down-regulated. Importantly, we found immune system process and tumor necrosis factor receptor (superfamily) binding pathways were downregulated based on the GO and KEGG enrichment analysis. Meanwhile, we detected the expression of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-8), anti-inflammatory cytokines (TGF-β), LYZ, IgM, and Hsp70 in the gills tissue at 12 h and 24 h after Del exposure, which were consistent with our sequencing results. Collectively, these results demonstrated that the gills injury and immunotoxicity were induced by Del exposure and provided novel insight for explaining to some extent why Del-exposure fish are more susceptible to concurrent or secondary viral or bacterial infections.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jin Xiang
- Aquatic Products Seed Stock Station in Hunan Province, Changsha 410153, China.
| | - Zhiliang Zuo
- Aquatic Products Seed Stock Station in Hunan Province, Changsha 410153, China.
| | - Xing Tian
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
10
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6517683. [DOI: 10.1093/femsec/fiac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
|
11
|
Saleh M, Abdel-Baki AAS, Dkhil MA, El-Matbouli M, Al-Quraishy S. Proteins of the Ciliated Protozoan Parasite Ichthyophthirius multifiliis Identified in Common Carp Skin Mucus. Pathogens 2021; 10:pathogens10070790. [PMID: 34206679 PMCID: PMC8308598 DOI: 10.3390/pathogens10070790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
The skin mucus is the fish primary defense barrier protecting from infections via the skin epidermis. In a previous study, we have investigated the proteome of common carp (Cyprinus carpio) skin mucus at two different time points (1 and 9 days) post-exposure to Ichthyophthirius multifiliis. Applying a nano-LC ESI MS/MS technique, we have earlier revealed that the abundance of 44 skin mucus proteins has been differentially regulated including proteins associated with host immune responses and wound healing. Herein, in skin mucus samples, we identified six proteins of I. multifiliis associated with the skin mucus in common carp. Alpha and beta tubulins were detected in addition to the elongation factor alpha, 26S proteasome regulatory subunit, 26S protease regulatory subunit 6B, and heat shock protein 90. The identified proteins are likely involved in motility, virulence, and general stress during parasite growth and development after parasite attachment and invasion. Two KEGG pathways, phagosome and proteasome, were identified among these parasite proteins, mirroring the proteolytic and phagocytic activities of this parasite during host invasion, growth, and development, which represent a plausible host invasion strategy of this parasite. The results obtained from this study can support revealing molecular aspects of the interplay between carp and I. multifiliis and may help us understand the I. multifiliis invasion strategy at the skin mucus barrier. The data may advance the development of novel drugs, vaccines, and diagnostics suitable for the management and prevention of ichthyophthiriosis in fish.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-(12)-5077-4736
| | - Abdel-Azeem S. Abdel-Baki
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.-A.S.A.-B.); (M.A.D.); (S.A.-Q.)
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A. Dkhil
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.-A.S.A.-B.); (M.A.D.); (S.A.-Q.)
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.-A.S.A.-B.); (M.A.D.); (S.A.-Q.)
| |
Collapse
|
12
|
Methanol Skin Mucus Extract of Mrigal (Cirrhinus mrigala) Fish Peptide Targeting Viral Particles of Infectious Pancreatic Necrosis Virus (IPNV) and Infectious Salmon Anemia Virus (ISAV): an in silico Approach. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10179-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
14
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
15
|
Quan J, Kang Y, Li L, Zhao G, Sun J, Liu Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteomics 2020; 233:104079. [PMID: 33346158 DOI: 10.1016/j.jprot.2020.104079] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aquaculture of rainbow trout (Oncorhynchus mykiss) is severely hampered by high temperatures in summer, and understanding the regulatory mechanisms controlling responses to chronic heat stress may assist the development of measures to relieve heat stress. In the present study, biochemical parameters revealed a strong stress response in rainbow trout at 24 °C, including activation of stress defence and immune systems. Liver proteome analysis under heat stress (24 °C) and control (18 °C) conditions using DIA/SWATH identified precursors (90,827), peptides (67,028), proteins (6770) and protein groups (5124), among which 460 differentially abundant proteins (DAPs; q-value < 0.05, fold change >1.5), 201 and 259 were up- and down-regulated, respectively. Many were related to heat shock proteins (HSPs), metabolism and immunity. Gene Ontology (GO) analysis showed that some DAPs induced at high temperature were involved in regulating cell homeostasis, metabolism, adaptive stress and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified metabolic pathways, protein processing in endoplasmic reticulum, PPAR signalling, and complement and coagulation cascades. Protein-protein interaction (PPI) network analysis indicated that HSP90b1 and C3 may cooperative to affect cell membrane integrity under heat stress. Our findings assist the development of strategies to relieve heat stress in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
16
|
Jaafar R, Ødegård J, Mathiessen H, Karami AM, Marana MH, von Gersdorff Jørgensen L, Zuo S, Nielsen T, Kania PW, Buchmann K. Quantitative trait loci (QTL) associated with resistance of rainbow trout Oncorhynchus mykiss against the parasitic ciliate Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2020; 43:1591-1602. [PMID: 32944955 PMCID: PMC7692903 DOI: 10.1111/jfd.13264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis has a low host specificity eliciting white spot disease (WSD) in a wide range of freshwater fishes worldwide. The parasite multiplies rapidly whereby the infection may reach problematic levels in a host population within a few days. The parasite targets both wild and cultured fish but the huge economic impact of the protozoan is associated with mortality, morbidity and treatment in aquacultural enterprises. We have investigated the potential for genetic selection of WSD-resistant strains of rainbow trout. Applying the DNA typing system Affymetrix® and characterizing the genome of the individual fish by use of 57,501 single nucleotide polymorphisms (SNP) and their location on the rainbow trout chromosomes, we have genetically characterized rainbow trout with different levels of natural resistance towards WSD. Quantitative trait loci (QTL) used for the selection of breeders with specific markers for resistance are reported. We found a significant association between resistance towards I. multifiliis infection and SNP markers located on the two specific rainbow trout chromosomes Omy 16 and Omy 17. Comparing the expression of immune-related genes in fish-with and without clinical signs-we recorded no significant difference. However, trout surviving the infection showed high expression levels of genes encoding IgT, T-cell receptor TCRβ, C3, cathelicidins 1 and 2 and SAA, suggesting these genes to be associated with protection.
Collapse
Affiliation(s)
- R Jaafar
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - H Mathiessen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - A M Karami
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - M H Marana
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - L von Gersdorff Jørgensen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - S Zuo
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - P W Kania
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - K Buchmann
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| |
Collapse
|
17
|
Carrera M, Piñeiro C, Martinez I. Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products. Foods 2020; 9:E1050. [PMID: 32759674 PMCID: PMC7466198 DOI: 10.3390/foods9081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
This review presents the primary applications of various proteomic strategies to evaluate the impact of farming conditions on food quality and safety in aquaculture products. Aquaculture is a quickly growing sector that represents 47% of total fish production. Food quality, dietary management, fish welfare, the stress response, food safety, and antibiotic resistance, which are covered by this review, are among the primary topics in which proteomic techniques and strategies are being successfully applied. The review concludes by outlining future directions and potential perspectives.
Collapse
Affiliation(s)
- Mónica Carrera
- Food Technology Department, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain
| | - Carmen Piñeiro
- Scientific Instrumentation and Quality Service (SICIM), Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology—Plentzia Marine Station (PiE), University of the Basque Country UPV/EHU, 48620 Plentzia, Spain;
- IKERBASQUE Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Liang J, Hu X, Lü A, Sun J. First report on the characterization of pathogenic Rahnella aquatilis KCL-5 from crucian carp: Revealed by genomic and proteomic analyses. JOURNAL OF FISH DISEASES 2020; 43:889-914. [PMID: 32608057 DOI: 10.1111/jfd.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Rahnella aquatilis is an important pathogen of several aquatic organisms and is found widely distributed in the freshwater, soil, fish and human clinical samples. Our previously published study reported a novel pathogenic R. aquatilis strain KCL-5 to crucian carp (Carassius auratus). To further investigate the characteristics and pathogenesis caused by R. aquatilis, we here report on the pathological changes, bacterial genomic and proteomic analyses of strain KCL-5. Significantly pathological changes in liver, intestine, spleen and gills were observed in infected fish. The genome consists of one circular chromosome 5,062,299 bp with 52.02% GC content and two plasmids (506,827 bp, 52.16%; 173,433 bp, 50.00%) and predicted 5,653 genes, 77 tRNAs and 22 rRNAs. Some virulence factors were characterized, including outer membrane protein, haemolysin, RTX toxin, chemotaxis and T3SS secretion system. Antimicrobial resistance genes such as EmrAB-TolC, MexABC-OpmB and RosAB efflux pump were found in strain KCL-5. KEGG analysis showed that mainly functional modules were ABC transporters, biosynthesis of amino acids, two-component system, quorum sensing, flagellum assembly and chemotaxis, in which most of them were identified by using 2-DE/MS analyses. To our knowledge, this was first report on the molecular characteristics of R. aquatilis by multi-omics approaches, which will provide insights into the pathogenic mechanism of R. aquatilis infection in fish.
Collapse
Affiliation(s)
- Jing Liang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
19
|
Buchmann K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol 2020; 42:e12675. [PMID: 31587318 PMCID: PMC7507210 DOI: 10.1111/pim.12675] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis causes white spot disease in freshwater fish worldwide. The theront penetrates external surfaces of the naïve fish where it develops into the feeding trophont stage and elicits a protective immune response both at the affected site as well as at the systemic level. The present work compiles data and presents an overall model of the protective reactions induced. A wide spectrum of inflammatory reactions are established upon invasion but the specific protection is provided by adaptive factors. Immunoglobulin IgT is involved in protection of surfaces in several fish species and is thereby one of the first adaptive immune molecules reacting with the penetrating theront. IgT producing lymphocytes occur in epithelia, dispersed or associated with lymphoid cell aggregations (skin epidermis, fins, gills, nostrils and buccal cavities) but they are also present in central immune organs such as the head kidney, spleen and liver. When theronts invade immunized fish skin, they are encountered by host factors which opsonize the parasite and may result in complement activation, phagocytosis or cell-mediated killing. However, antibody (IgT, IgM and IgD) binding to parasite cilia has been suggested to alter parasite behaviour and induce an escape reaction, whereby specific IgT (or other classes of immunoglobulin in fish surfaces) takes a central role in protection against the parasite.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
20
|
Estruch G, Martínez-Llorens S, Tomás-Vidal A, Monge-Ortiz R, Jover-Cerdá M, Brown PB, Peñaranda DS. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J Proteomics 2020; 216:103672. [PMID: 32004726 DOI: 10.1016/j.jprot.2020.103672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
Abstract
The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. SIGNIFICANCE: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.
Collapse
Affiliation(s)
- Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raquel Monge-Ortiz
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, 47907 West Lafayette, IN, USA
| | - David S Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019; 7:microorganisms7120627. [PMID: 31795391 PMCID: PMC6955699 DOI: 10.3390/microorganisms7120627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
Immersion vaccines are used for a variety of aquacultured fish to protect against infectious diseases caused by bacteria and viruses. During immersion vaccination the antigens are taken up by the skin, gills or gut and processed by the immune system, where the resulting response may lead to protection. The lack of classical secondary responses following repeated immersion vaccination may partly be explained by the limited uptake of antigens by immersion compared to injection. Administration of vaccines depends on the size of the fish. In most cases, immersion vaccination is inferior to injection vaccination with regard to achieved protection. However, injection is problematic in small fish, and fry as small as 0.5 gram may be immersion vaccinated when they are considered adaptively immunocompetent. Inactivated vaccines are, in many cases, weakly immunogenic, resulting in low protection after immersion vaccination. Therefore, during recent years, several studies have focused on different ways to augment the efficacy of these vaccines. Examples are booster vaccination, administration of immunostimulants/adjuvants, pretreatment with low frequency ultrasound, use of live attenuated and DNA vaccines, preincubation in hyperosmotic solutions, percutaneous application of a multiple puncture instrument and application of more suitable inactivation chemicals. Electrostatic coating with positively charged chitosan to obtain mucoadhesive vaccines and a more efficient delivery of inactivated vaccines has also been successful.
Collapse
|
22
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|