1
|
Chi Y, Mukiibi R, Zhang H, Zhang H, Li W, Robledo D, Chen S, Li Y. Transcriptome Analysis Reveals the Immunosuppression in Tiger Pufferfish ( Takifugu rubripes) under Cryptocaryon irritans Infection. Animals (Basel) 2024; 14:2058. [PMID: 39061520 PMCID: PMC11273842 DOI: 10.3390/ani14142058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The tiger pufferfish (Takifugu rubripes), also known as fugu, has recently suffered from severe C. irritans infections under aquaculture environment, yet the underlying immune mechanisms against the parasite remain poorly understood. In this study, we conducted a comprehensive transcriptome analysis of the gill tissue from infected and uninfected fish using PacBio long-read (one pooled sample each for seriously infected and healthy individuals, respectively) and Illumina short-read (three pools for mildly infected, seriously infected, and healthy individuals, respectively) RNA sequencing technologies. After aligning sequence data to fugu's reference genome, 47,307 and 34,413 known full-length transcripts were identified and profiled in healthy and infected fish, respectively. Similarly, we identified and profiled 1126 and 803 novel genes that were obtained from healthy and infected fish, respectively. Interestingly, we found a decrease in the number of alternative splicing (AS) events and long non-coding RNAs (lncRNAs) after infection with C. irritans, suggesting that they may be involved in the regulation of the immune response in fugu. There were 687 and 1535 differentially expressed genes (DEGs) in moderately and heavily infected fish, respectively, compared to uninfected fish. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that immune-related DEGs in the two comparison groups were mainly enriched in cytokine-cytokine receptor interactions, ECM-receptor interactions, T-cell receptor signaling pathways, Th1 and Th2 cell differentiation, and Th17 cell differentiation pathways. Further analysis revealed that a large number of immune-related genes were downregulated in infected fish relative to uninfected ones, such as CCR7, IL7R, TNFRSF21, CD4, COL2A1, FOXP3B, and ITGA8. Our study suggests that C. irritans is potentially a highly efficient parasite that may disrupt the defense mechanisms of fugu against it. In addition, in combination of short-read RNA sequencing and previous genome-wide association analyses, we identified five key genes (NDUFB6, PRELID1, SMOX, SLC25A4, and DENND1B) that might be closely associated with C. irritans resistance. This study not only provides valuable resources of novel genic transcripts for further research, but also provides new insights into the immune mechanisms underlying C. irritans infection response in farmed fugu.
Collapse
Affiliation(s)
- Yong Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (R.M.); (D.R.)
| | - Hongxiang Zhang
- Tangshan Haidu Seafood Co., Ltd., Tangshan 063506, China; (H.Z.); (H.Z.); (W.L.)
- Fishery Research Institute, Tangshan Academy of Agricultural Sciences, Tangshan 063001, China
| | - Haien Zhang
- Tangshan Haidu Seafood Co., Ltd., Tangshan 063506, China; (H.Z.); (H.Z.); (W.L.)
| | - Weidong Li
- Tangshan Haidu Seafood Co., Ltd., Tangshan 063506, China; (H.Z.); (H.Z.); (W.L.)
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (R.M.); (D.R.)
- Department of Genetics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yangzhen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (R.M.); (D.R.)
- Tangshan Haidu Seafood Co., Ltd., Tangshan 063506, China; (H.Z.); (H.Z.); (W.L.)
| |
Collapse
|
2
|
T A JP, Karunakaran C, Nath A, Kappalli S. Transcriptomic Variation of Amphiprion Percula (Lacepède, 1802) in Response to Infection with Cryptocaryon Irritans Brown, 1951. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:858-890. [PMID: 37695540 DOI: 10.1007/s10126-023-10246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Cryptocaryon irritans (Brown 1951) frequently infect the Pomacentridae fishes causing severe economic losses. However, the anti-C. irritans' molecular mechanism in these fishes remains largely unknown. To address this issue, we conducted RNA-Seq for C. irrtians-infected gills of the clownfish Amphiprion percula (Lacepède 1802) at the early (day 1) and late (day 3) stages of infection. A total of 1655 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs showed a vast genetic variation related to the following aspects: ECM-receptor interaction, P13K-Akt signalling, cytokine-cytokine receptor interaction, and endocytosis. During the early phase of infection, key genes involved in ATP production, energy homeostasis, and stress control were abruptly increased. In the late phase, however, acute response molecules of the peripheral nervous system (synaptic transmission and local immunity), metabolic system triggering glycogen synthesis, energy maintenance, and osmoregulation were found to be critical. The highest number of upregulated genes (URGs) recovered during the early phase was included under the 'biological process' category, which primarily functions as response to stimuli, signalling, and biological regulation. In the late phase, most of the URGs were related to gene regulation and immune system processes under 'molecular function' category. The immune-related URGs of early infection include major histocompatibility complex (MHC) class-II molecules apparently triggering CD4+ T-cell-activated Th responses, and that of late infection include MHC class-1 molecules for the possible culmination of CD8+ T-cell triggered cytotoxicity. The high level of genic single nucleotide polymorphisms (SNPs) identified during the late phase of infection is likely to influence their susceptibility to secondary infection. In summary, the identified DEGs and their related metabolic and immune-related pathways and the SNPs may provide new insights into coordinating the immunological events and improving resistance in Pomacentridae fishes against C. irritans.
Collapse
Affiliation(s)
- Jose Priya T A
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| | - Charutha Karunakaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Aishwarya Nath
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Sudha Kappalli
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| |
Collapse
|
3
|
Qiao D, Zhao Y, Pei C, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Two CcCCL19bs orchestrate an antibacterial immune response in Yellow River carp (Cyprinus carpio haematopterus). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108987. [PMID: 37541636 DOI: 10.1016/j.fsi.2023.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Chemokines are a group of chemotactic cytokines with an essential role in homeostasis as well as immunity via specific G protein-coupled receptors and atypical receptors. In our study, two Yellow River carp (Cyprinus carpio haematopterus) CCL19b genes (CcCCL19bs), tentatively named CcCCL19b_a and CcCCL19b_b, were cloned. The open reading frames (ORFs) of CcCCL19b_a and CcCCL19b_b were both 333 bp that encoded a 12 kDa protein with 110 amino acid residues. CcCCL19bs contained a signal peptide and a SCY domain with four typical conserved cysteine residues. The two CcCCL19b proteins shared high similarities with each other in both secondary and three-dimensional structure. Phylogenetic analysis showed that CcCCL19bs and other CCL19bs from tetraploid cyprinid fish were clustered into one clade. CcCCL19bs were highly expressed in gill and intestine in healthy fish, and a significant up-regulation of gene expression after Aeromonas hydrophila infection and poly(I:C) stimulation was observed in gill, liver, and head kidney. Furthermore, chemotaxis and antibacterial activity of CcCCL19bs were studied. The results indicated that recombinant CcCCL19b_a and CcCCL19b_b protein (rCcCCL19b_a and rCcCCL19b_b) exhibited significant attraction to primary head kidney leukocytes (HKLs). Meanwhile, both of rCcCCL19bs could promote the proliferation of HKLs, and significantly up-regulate the expressions of IL-1β, CCR7, and IL-6, and down-regulate the expression of IL-10 in primary HKLs. In vitro, rCcCCL19bs could bind and aggregate A. hydrophila and Staphylococcus aureus. The rCcCCL19bs exhibited significant antibacterial activity against A. hydrophila, but not S. aureus. Moreover, they inhibited the growth of A. hydrophila and S. aureus. In vivo, overexpression of CcCCL19bs contributed to the bacterial clearance. These studies suggested that CcCCL19bs orchestrate an antibacterial immune response.
Collapse
Affiliation(s)
- Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
4
|
Li Z, Jiang B, Zhong Z, Cao J, Li H, Wang C, Li A. Skin transcriptomic analysis and immune-related gene expression of golden pompano (Trachinotus ovatus) after Amyloodinium ocellatum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:188-195. [PMID: 35870749 DOI: 10.1016/j.fsi.2022.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Amyloodiniosis is a severe disease of marine and brackish water fish caused by Amyloodinium ocellatum. Golden pompano (Trachinotus ovatus) is often repeatedly infected by A. ocellatum, leading to extensive mortality. However, little is known about the immune response mechanisms of the T. ovatus following reinfection with A. ocellatum. In this study, an extensive analysis at the transcriptome level of T. ovatus skin was carried out at 24 h post-infection by A. ocellatum. During the transcriptomic analysis, 1367 differentially expressed genes (DEGs) in the skin of T. ovatus under A. ocellatum infection and control conditions were obtained. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotated analyses, the DEGs were significantly enriched in the immune-related pathways. To better understand the immune-related gene expression dynamics, a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the primary and secondary infection groups of T. ovatus at different stages (3 h, 12 h, 24 h, 48 h and, 72 h post-infection) of infection with A.ocellatum. The results showed that innate immunity-related genes [interleukin (IL-8), chemokine ligand 3 (CCL3), toll-like receptor 7 (TLR7), and G-type lysosome (LZM g)] and adaptive immunity-related gene [major histocompatibility complex (MHC) alpha antigen I and MHC alpha antigen II] expression levels in the primary and secondary infection groups were significantly increased compared to the control group. The expression of MHC I and MHC II was more rapidly upregulated in the secondary infection group compared with the primary infection group after A.ocellatum infection. However, no significant differences of A.ocellatum load were observed in primary and secondary infection groups. In addition, the serum of the primary infection group had significantly higher concentrations of triglyceride (TG), higher alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities than the control group. This study contributes to understanding the defense mechanisms in fish skin against ectoparasite infection.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong, China
| | - Zhihong Zhong
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
5
|
Suo N, Zhou ZX, Xu J, Cao DC, Wu BY, Zhang HY, Xu P, Zhao ZX. Transcriptome Analysis Reveals Molecular Underpinnings of Common Carp ( Cyprinus carpio) Under Hypoxia Stress. Front Genet 2022; 13:907944. [PMID: 35669183 PMCID: PMC9163828 DOI: 10.3389/fgene.2022.907944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
As an essential environmental factor that affects the economic benefits of aquaculture, hypoxia is one of the urgent problems to be solved in the aquaculture fish breeding industry. Common carp (Cyprinus carpio) is a critical economic fish in China, and at present, there are many breeding strains of common carp with different character advantages in China, including Hebao red carp (C. carpio var wuyuanesis) and Songpu mirror carp (C. carpio var specularis). Even if the environmental adaptation of common carp is generally strong, the genetic background of hypoxia tolerance in different strains of common carp is unclear yet. This study tested the hypoxia tolerance of Songpu minor carp, Hebao red carp, and their hybrid F1 population by an acute hypoxia treatment. Muscle and liver tissues were used for transcriptome sequencing analysis to identify the key factors for hypoxia tolerance and explore the potential genetic mechanism for breeding high hypoxia tolerance in common carp. The comparative transcriptomic analysis revealed abundant hypoxia response-related genes and their differential regulation mechanism in these two tissues of different common carp strains under acute hypoxia, including immune response, cellular stress response, HIFs (hypoxia-inducible factors), MAP kinase, iron ion binding, and heme binding. Our findings will facilitate future investigation on the hypoxia response mechanism and provide a solid theoretical basis for breeding projects in common carp.
Collapse
Affiliation(s)
- Ning Suo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhi-Xiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ding-Chen Cao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Bi-Yin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Han-Yuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zi-Xia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| |
Collapse
|
6
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. Integrated Analysis of lncRNA and circRNA Mediated ceRNA Regulatory Networks in Skin Reveals Innate Immunity Differences Between Wild-Type and Yellow Mutant Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:802731. [PMID: 35655786 PMCID: PMC9152293 DOI: 10.3389/fimmu.2022.802731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Sun JL, Jiang T, Gu Y, Song FB, Wen X, Luo J. Differential immune and metabolic responses underlie differences in the resistance of Siganus oramin and Trachinotus blochii to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:166-179. [PMID: 34798286 DOI: 10.1016/j.fsi.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have demonstrated that Cryptocaryon irritans can efficiently propagate in golden pompano (Trachinotus blochii), especially under intensive high-density culture, which can lead to large-scale infection, bacterial invasion, and major economic losses. By contrast, Siganus oramin is less susceptible to C. irritans infection. Here, we artificially infected S. oramin and T. blochii with C. irritans. We then used RNA-seq to characterize the expression of genes in the gills of S. oramin and T. blochii at different times after infection, conducted bioinformatics analysis of relevant pathways, and compared the differentially expressed genes in the two species. The aim of this study was to enhance our understanding of host-parasite interactions to aid the development of effective prevention and treatment strategies for C. irritans. Infection with C. irritans induced the differential expression of a large number of genes in the gills of S. oramin, indicating that S. oramin may respond to C. irritans infection by modifying the expression of genes at the transcriptional level. Our research showed that the Toll-like receptor signaling pathway, Antigen processing and presentation, Complement and coagulation cascades, and Cytosolic DNA-sensing pathway are involved in the immune response of S. oramin and T. blochii to C. irritans infection. However, T. blochii has a weak ability to mobilize neutrophils to participate in defense against C. irritans infection and differs from S. oramin in its ability to induce specific immune responses. Because of gill tissue damage during infection, dissolved oxygen intake is reduced, which increases physiological and metabolic stress. The metabolic pathways of S. oramin and T. blochii significantly differed; specifically, the main pathways in S. oramin were related to glucose and lipid metabolism, and the main pathways in T. blochii were related to amino acid metabolism. This may reduce the efficiency of ATP biosynthesis in T. blochii and result in dysfunctional energy metabolism. Therefore, differential immune and metabolic responses underlie differences in the resistance of S. oramin and T. blochii to C. irritans.
Collapse
Affiliation(s)
- Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Xin Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 70228, China.
| |
Collapse
|
8
|
Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics 2021; 74:129-147. [PMID: 34850255 DOI: 10.1007/s00251-021-01235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
B30.2 domains, also known as PRY/SPRY, are key components of specific subsets of two large families of proteins involved in innate immunity: the tripartite motif proteins (TRIMs) and the Nod-like receptors (NLRs). TRIM proteins are important, often inducible factors of antiviral innate immunity, targeting multiple steps of viral cycles through a variety of mechanisms. NLRs prime and regulate systemic innate defenses, especially against bacteria, and control inflammation. Large TRIM and NLR subsets characterized by the presence of a B30.2 domain have been reported from a few fish species including zebrafish and seem to be strongly prone to gene duplication/expansion. Here, we performed a large-scale survey of these receptors across about 150 fish genomes, focusing on ray-finned fishes. We assessed the number and genomic distribution of domains and domain combinations associated with TRIMs, NLRs, and other genes containing B30.2 domains and looked for gene expansion patterns across fish groups. We then used a model to test the impact of taxonomy, genome size, and environmental variables on the copy numbers of these genes. Our findings reveal novel domain structures, clade-specific gains and losses. They also assist with the timing of the gene expansions, reveal patterns associated with the MHC, and lay the groundwork for further studies delving deeper into the forces that drive the copy number variation of immune genes on a species level.
Collapse
|
9
|
Mo ZQ, Wu HC, Hu YT, Lu ZJ, Lai XL, Chen HP, He ZC, Luo XC, Li YW, Dan XM. Transcriptomic analysis reveals innate immune mechanisms of an underlying parasite-resistant grouper hybrid (Epinephelus fuscogutatus × Epinephelus lanceolatus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:67-75. [PMID: 34607009 DOI: 10.1016/j.fsi.2021.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Hybridization is an artificial breeding strategy for generating potentially desirable offspring. Recently, a novel Hulong grouper hybrid (Epinephelus fuscogutatus × Epinephelus lanceolatus) yielded significant growth superiority over its parent. Improved innate immunity is considered as another desirable feature during hybridization. However, whether this Hulong grouper achieved disease resistance has not yet been revealed. In this study, we first examine the infection intensity of C. irritans in the Hulong grouper, and found that the Hulong grouper is less susceptible to C. irritans primary infection. A higher immobilization titer was found in the infected Hulong grouper at Day 2 when compared with the control grouper. Furthermore, severe hyperplasia was observed in the orange-spotted grouper, but not in the Hulong grouper's skin epidermis. To further understand the innate immune mechanism against C. irritans, we conducted a comparative transcriptome analysis of the Hulong grouper during the infection. There are 6464 differentially expressed genes (DEGs) identified in the skin between the control and infected Hulong grouper. This indicates that the innate immune components, such as the complement system, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Interleukin 17 (IL-17) signaling pathway, and Toll-like receptor (TLR) signaling pathway were up-regulated during the infection. These results show that the C. irritans infection can induce a remarkable inflammatory response in the Hulong grouper. Moreover, a total of 75 pairs of orthologs with the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions >1, considered rapidly evolving genes (REGs), was identified between the Hulong and orange-spotted grouper. More critically, most REGs were enriched in the immune system, suggesting that rapid evolution of the immune system might occur in the Hulong grouper. These results provide a more comprehensive understanding of the innate immunity mechanism of the hybrid Hulong grouper.
Collapse
Affiliation(s)
- Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Hui-Cheng Wu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ying-Tong Hu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Jun Lu
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xue-Li Lai
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong-Ping Chen
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhi-Chang He
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Mo Z, Jiang B, Lai X, Wu H, Luo X, Dan X, Li Y. Characterization and functional analysis of hybrid pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) complement C3 against Cryptocaryon irritans infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100032. [DOI: 10.1016/j.fsirep.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
|
11
|
Xie X, Jiang Y, Miao R, Huang J, Zhou L, Kong J, Yin F. The gill transcriptome reveals unique antimicrobial features that protect Nibea albiflora from Cryptocaryon irritans infection. JOURNAL OF FISH DISEASES 2021; 44:1215-1227. [PMID: 33913520 DOI: 10.1111/jfd.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Cryptocaryonosis is the greatest threat to most teleost species among all parasitic diseases, causing mass loss to the marine aquaculture industry. Epidemiological investigation of teleost susceptibility to Cryptocaryon irritans infection revealed that yellow drum (Nibea albiflora) is highly resistant. In order to further understand the activation of the immune system in the gill, which is one of the main mucosal-associated lymphoid tissues and a target of parasites, transcriptome analysis of the yellow drum gill was performed. Gill samples were collected from fish challenged after 24 hr and 72 hr with theronts at a median death rate (2050 theronts per gram fish). Gene expression profiles showed that TLR5 was the only receptor that activated the downstream immune response. The infection activated complement cascade through alternative pathway and increased the expression of C5a anaphylatoxin chemotactic receptor 1. In addition, possible antimicrobial molecules, including lipoprotein and haptoglobin, which are responsible for trypanolysis in humans, were among the top significantly upregulated genes at 24 hr. After 72 hr, the expression of secreted immunoglobulin T-related genes was induced. These results suggested a rapid innate and adaptive immune response at the mucosal level. In conclusion, the results provide new perspectives on mucosal immune resistance in yellow drum against cryptocaryonosis and provide the possibility of mining resistance genes for future therapy.
Collapse
Affiliation(s)
- Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yunyan Jiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rujiang Miao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiashuang Huang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Liyao Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Huang Y, Wang R, Gao T, Wu T, Zhang Q, Shi Y, Ding S, Zhao Z. Transcriptome analysis of immune response against Siniperca chuatsi rhabdovirus infection in mandarin fish Siniperca chuatsi. JOURNAL OF FISH DISEASES 2021; 44:675-687. [PMID: 33423323 DOI: 10.1111/jfd.13329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
As one of the piscine rhabdoviruses, Siniperca chuatsi rhabdovirus (SCRV) has caused considerable losses to mandarin fish aquaculture industry. RNA-seq, as efficient transcriptome research method, has been widely used to study the immune response of fish to pathogens. This study reported the effect of SCRV infection at 0, 24 and 60 hr on S. chuatsi at the transcriptome level. A total of 61,527 unigenes with high quality were obtained, and 3,095, 1,854 and 227 differentially expressed genes (DEGs) were labelled between the Sc24 and Sc0 groups, the Sc60 and Sc0 groups and the Sc60 and Sc24 groups, respectively. Genes involved in innate and adaptive immunity were highlighted. In Gene Ontology analysis, the DEGs that participated in immune response, innate immune response and the regulation of apoptotic process were identified as enriched classes. Kyoto Encyclopedia of Genes and Genomes pathway results indicated that most DEGs caused by SCRV infection were identified in the immune system (retinoic acid-inducible gene-I-like receptor/Toll-like receptor/nucleotide-binding oligomerization domain-like receptor/C-type lectin receptor signalling pathway), cellular processes, cell growth and death (p53 signalling pathway, cellular senescence, apoptosis and phagosome), and metabolism. Quantitative real-time PCR was used to further verify the expression levels of 15 immune-related DEGs. The transcriptome database obtained in this study provided further in-depth insight into the immune response of S. chuatsi against SCRV.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, Nanjing, China
- Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Ruixia Wang
- College of Oceanography, Hohai University, Nanjing, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, China
| | - Ting Wu
- Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, Yangzhou, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yangbai Shi
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Shuyan Ding
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
13
|
Kitani Y, Nagashima Y. l-Amino acid oxidase as a fish host-defense molecule. FISH & SHELLFISH IMMUNOLOGY 2020; 106:685-690. [PMID: 32822860 DOI: 10.1016/j.fsi.2020.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1 Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University, Hirakidai 2416, Tainai, Niigata, 995-2702, Japan
| |
Collapse
|
14
|
Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, Lamas J. Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus. A Transcriptomic Analysis. BIOLOGY 2020; 9:biology9100337. [PMID: 33076342 PMCID: PMC7602577 DOI: 10.3390/biology9100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The present study analyses the interactions between Philasterides dicentrarchi (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot Scophthalmus maximus during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 107 ciliates and at 12 and 48 hpi in turbot injected ip with 105 ciliates. Numerous genes were differentially expressed (DE) in P. dicentrarchi, relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in P. dicentrarchi infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, P. dicentrarchi strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill P. dicentrarchi during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., arachidonate 15-lipoxygenase) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in P. dicentrarchi during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.
Collapse
Affiliation(s)
- Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Antonio Figueras
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-88-181-6951; Fax: +34-88-159-6904
| |
Collapse
|
15
|
Ma R, Yu Y, Liu X, Lei Y, Zhou S, Xie X, Jin S, Qian D, Yin F. Transcriptomic analysis of Nibea albiflora skin in response to infection by Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 98:819-831. [PMID: 31751659 DOI: 10.1016/j.fsi.2019.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Massive infection caused by Cryptocaryon irritans is detrimental to the development of marine aquaculture. Recently, our lab found that Nibea albiflora has low sensitivity and low mortality to C. irritans infection. The present study was designed to investigate the mechanisms of the N. albiflora response to C. irritans infection by analyzing transcriptome changes in the skin. Skin samples of control and experimental groups with C. irritans infection were collected at 24 and 72 h (24 h control, 24 h post-infection, 72 h control, and 72 h post-infection). Three parallels were set for each group and sample time, and a total of 12 skin samples were collected for sequencing. Overall, 297,489,843 valid paired-end reads and 48,817 unigenes were obtained with an overall length of 59,010,494 nt. In pairwise comparisons, changes in expression occurred in 1621 (764 upregulated and 857 downregulated), 285 (180 upregulated and 105 downregulated), 993 (489 upregulated and 504 downregulated), and 37 (8 upregulated and 29 downregulated) genes at 24 h control vs 24 h post-infection, 72 h control vs 72 h post-infection, 24 h post-infection vs 72 h post-infection, and 24 h control vs 72 h control, respectively. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) indicated that the number of genes enriched in GO sub-categories were ordered 24 h control vs 24 h post-infection > 24 h post-infection vs 72 h post-infection >72 h control vs 72 h post-infection > 24 h control vs 72 h control. Further analysis showed that immune-related GO terms (including immune system process, complement activation, and humoral immunity) were significantly enriched at both 72 h control vs 72 h post-infection and 24 h post-infection vs 72 h post-infection, but no immune-related GO terms were significantly enriched in the 24 h control vs 72 h control and at 24 h control vs 24 h post-infection, indicating that C. irritans infection mainly affected the physiological metabolism of N. albiflora at an early stage (24 h), and immune-related genes play an important role at a later stage (72 h) of infection. In KEGG pathway analysis, the complement and coagulation cascade pathway are involved in early infection. Hematopoietic cell lineage, natural killer (NK) cell-mediated cytotoxicity, and the intestinal immune network for IgA production are involved in later infection. Further analysis showed that the alternative pathway of complement and coagulation cascades plays an important role in the resistance of N. albiflora to early C. irritans infection. During late infection, CD34, IgM, and IgD were significantly upregulated in the hematopoietic cell lineage pathway. CCR9 was significantly downregulated, and IGH and PIGR were significantly upregulated in the intestinal immune network for IgA production. GZMB and IGH were significantly downregulated in NK cell-mediated cytotoxicity. These findings indicate that acquired immunity at the mRNA level was initiated during later infection. In addition, the IL-17 signaling pathway was enriched by downregulated DEGs at 24 h post-infection vs 72 h post-infection, suggesting the inflammatory response at 24 h was stronger than at 72 h and the invasion of the parasite has a greater impact on the host.
Collapse
Affiliation(s)
- Rongrong Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Yuhua Lei
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Suming Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| |
Collapse
|