1
|
Weerachatyanukul W, Pooljun C, Hirono I, Chotwiwatthanakun C, Jariyapong P. Infectivity and virulence of the infectious Macrobrachium rosenbergii nodavirus produced from Drosophila melanogaster cell using Penaeus merguiensis as an infection model. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108474. [PMID: 36481289 DOI: 10.1016/j.fsi.2022.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
It has been established that baculovirus-insect cell line is applicable for shrimp virus replication, propagation and secretion in the in vitro culture system. We thus aimed to produce Macrobrachium rosenbergii nodavirus (MrNV) clone within S2 cell to improve viral production over the previous model using Sf9 cell. Upon the transfection of genomic RNA1 and RNA2 into S2 cells, the recognizable cellular changes including cytoplasmic swelling and clumping of cells were observed within 24 h. The culture media containing secreted MrNV particles were re-transfected into healthy S2 cells and similar cellular changes as with the first transfection were observed. Immunohistochemistry analysis of the re-infecting S2 cell revealed an intense immunoreactivity against MrNV capsid protein confirming that S2 cell was permissive cells for MrNV. In vivo infectivity test using P. merguiensis as a model animal exposed to the secreted MrNV revealed the presence of RNA2 fragment in shrimp tissue accompanied with the sign of whitish abdominal muscle at 24 h post-infection (p.i.). In addition, the number of shrimp hemocytes decreased at 6-24 h p.i. and returned to the normal level at 48 h p.i., whereas a significant up-regulation of immune-related genes including HSP70 and trypsin was noted. These data suggested that rescued MrNV produced in S2 is practically useful for MrNV infection test in which their natural virion inoculae are difficult to obtain. In addition, the molecular basis of viral pathogenesis can further be investigated which should be beneficial for any antiviral therapy developments in the future.
Collapse
Affiliation(s)
- Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand; Center of Excellence for Aquaculture Technology and Innovation, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | | | - Pitchanee Jariyapong
- Center of Excellence for Aquaculture Technology and Innovation, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand; Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand.
| |
Collapse
|
2
|
Zhu J, Shao Y, Chen K, Zhang W, Li C. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy. FISH & SHELLFISH IMMUNOLOGY 2021; 119:602-612. [PMID: 34742899 DOI: 10.1016/j.fsi.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminases (TGases) are widely known to play critical roles in innate immunity, in particular, TGase2, which involves in autophagy process to help degrade protein aggregates under stressful conditions in mammals. Nevertheless, the function of the TGase2 counterpart whether involves in invertebrate autophagy is largely unknown. In this study, a novel TGase2-like homologous gene from the sea cucumber Apostichopus japonicus (named as AjTGase2-like) was cloned using RACE technology and its biological functions were also investigated. The AjTGase2-like gene encoded a peptide of 750 amino acids with the representative domains of Transglut_N domain, TGc domain, and two Transglut_C domains, which exhibited highly conservative with vertebrate TGase2. Multiple sequence alignments and phylogenetic analysis both supported that AjTGase2-like belonged to a new member of TGase2 subfamily. AjTGase2-like was pervasively expressed in all examined tissues, with the largest transcription in muscle, followed by respiratory trees, and intestine. After immersion infection with Vibrio splendidus, the mRNA and protein levels of AjTGase2-like were both significantly induced and reached the highest levels at 24 h, indicating AjTGase2-like plays a key role in immune response. Further functional analysis showed that the ubiquitinated protein level was significantly increased by 1.65-fold (p < 0.01) after silencing of AjTGase2-like, and the protein levels of AjLC3-II/I and AjBeclin1 were both obviously decreased by 0.49-fold (p < 0.01) and 0.64-fold (p < 0.01) at the same time, while the authophagy receptor of Ajp62 was signally up-regulated by 1.40-fold (p < 0.01) under same condition. Moreover, the immunofluorescence signals of AjLC3 and Ajp62 were consistent with their protein levels, suggesting knockdown of AjTGase2-like causes a blockage in autophagy. More importantly, the AjLC3 positive signal was not increased after adding with chloroquine in the case of AjTGase2-like interference, indicating AjTGase2-like might play pivotal role in the early step of autophagosome formation. Besides, our results showed that the fluorescence signal of AjTGase2-like was largely co-localized with Ajp62 around the cytoplasm in vivo, and rAjp62 could directly combine with rAjTGase2-like in vitro, indicating AjTGase2-like interacts with Ajp62 during autophagy. Overall, our findings supported that AjTGase2-like served as a positive regulator in sea cucumber authophay.
Collapse
Affiliation(s)
- Jiaqian Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| | - Kaiyu Chen
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Differential white spot syndrome virus-binding proteins in two hemocyte subpopulations of Chinese shrimp (Fenneropenaeus chinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104215. [PMID: 34324898 DOI: 10.1016/j.dci.2021.104215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A number of white spot syndrome virus (WSSV)-binding proteins have been identified previously in the hemocytes of Fenneropenaeus chinensis. In order to further investigate the differential WSSV-binding proteins in hemocyte subpopulations, granular hemocytes and hyalinocytes were sorted from WSSV-infected shrimp by immunomagnetic bead (IMB) method. The results of ELISA and immuno-dot blot assay showed that the WSSV-binding activity of granular hemocytes proteins was much stronger than that of hyalinocytes proteins. And the percentage of WSSV-positive granular hemocytes was significantly higher than that of hyalinocytes post WSSV infection, indicating that granular hemocytes were more susceptible to WSSV infection. Moreover, a total of 9 WSSV-binding proteins were successfully identified in granular hemocytes and hyalinocytes by two-dimensional virus overlay protein binding assay (2D-VOPBA) and MALDI-TOF MS analysis, of which 3 binding proteins (arginine kinase, protease 1 and transglutaminase) existing in both hyalinocytes and granular hemocytes and 6 proteins (F1ATP synthase β-chain, hnRNPs, GAPDH, RACK1, β-actin and cellular retinoic acid) detected only in granular hemocytes. Among these identified WSSV-binding proteins, the transglutaminase (TG) was further recombinantly expressed, and the recombinant TG could be bound with WSSV. Subsequently, quantitative real-time PCR analysis showed that differential expression levels of WSSV-binding proteins were observed in granular hemocytes and hyalinocytes. The results of this study revealed that the WSSV-binding proteins were differentially expressed in granular hemocytes and hyalinocytes, which provided a deeper insight into the interaction between WSSV and hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
4
|
Li XL, Gao Q, Shen PJ, Zhang YF, Jiang WP, Huang ZY, Peng F, Gu ZM, Chen XF. Proteomic analysis of individual giant freshwater prawn, Macrobrachium rosenbergii, growth retardants. J Proteomics 2021; 241:104224. [PMID: 33845180 DOI: 10.1016/j.jprot.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/21/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
"Iron prawn" is a condition of severe growth retardation that fishers call. The giant river prawn (Macrobrachium rosenbergii) is a commercially important species contains high protein content and functional nutrients. However, no proteomic information is available for this species. We performed the shotgun 2DLC-MS/MS proteomic analysis of the total protein from "iron prawn". Total 19,758 peptides corresponding to 2613 high-confidence proteins were identified. These proteins range in size from 40 to 70 kDa. KEGG analysis revealed that the largest group consisting total 102 KEGG pathway proteins comparing the "iron prawn" with the normal prawn. Additionally, 7, 11, 1, 6, and 5 commercially important enzymes were found in the eyestalk, liver, muscle, ovary, and testis, respectively. The functions of these differently expressed enzymes include immune system action against pathogens, muscle contraction, digestive system metabolism, cell differentiation, migration, and apoptosis in the severe growth retardation of "iron prawn". Our work provides insight into the understanding of the formation mechanism of "iron prawn".
Collapse
Affiliation(s)
- Xi-Lian Li
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Qiang Gao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Pei-Jing Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yu-Fei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Wen-Ping Jiang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhen-Yuan Huang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fei Peng
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Zhi-Min Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Xue-Feng Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquatic Animal Genetic and Breeding of Zhejiang province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
5
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
6
|
Junkunlo K, Söderhäll K, Söderhäll I. Transglutaminase 1 and 2 are localized in different blood cells in the freshwater crayfish Pacifastacus leniusculus. FISH & SHELLFISH IMMUNOLOGY 2020; 104:83-91. [PMID: 32479868 DOI: 10.1016/j.fsi.2020.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In the present study we show that hemocytes in the freshwater crayfish Pacifastacus leniusculus express two different transglutaminases. We describe the sequence of a previously unknown TGase (Pl_TGase1) and named this as Pl_TGase2 and compared this sequence with similar sequences from other crustaceans. The catalytic core domain is similar to the previously described TGase in P. leniusculus, but Pl_TGase2 has significant differences in the N-terminal and C-terminal domains. Further, we show conclusive evidences that these different transglutaminases are specific for different hemocyte types so that Pl_TGase1 is expressed in the hematopoietic tissue and in the cytoplasm of semigranular hemocytes, while Pl_TGase2 is expressed in vesicles in the granular hemocytes. By in situ hybridization we show that both Pl_TGase1 and Pl_TGase2 mRNA are present only in a subset of the respective hemocyte population. This observation indicates that there may be different subtypes of semigranular as well as granular hemocytes which may have different specific functions.
Collapse
Affiliation(s)
- Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
7
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|