1
|
Nie Z, Zheng Z, Zhu H, Sun Y, Gao J, Gao J, Xu P, Xu G. Effects of submerged macrophytes ( Elodea nuttallii) on water quality and microbial communities of largemouth bass ( Micropterus salmoides) ponds. Front Microbiol 2023; 13:1050699. [PMID: 36713211 PMCID: PMC9880226 DOI: 10.3389/fmicb.2022.1050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Traditional aquaculture ponds are one of the most vulnerable ecosystems; thus, ecological aquaculture is increasingly valued for its beneficial ecological properties and ecosystem services. However, little is known about ecological aquaculture of largemouth bass with submerged vegetation. Here, we designed three ecological ponds of cultured largemouth bass with submerged macrophytes (the EM group) and three ponds with traditional aquaculture (the M group) to reveal the response of water quality, and phytoplankton and bacterial communities, to submerged macrophyte bioremediation during a 90-day culture period. We observed that Cyanobacterial outbreak occurred in the M group ponds from day 7 to the end of the experiment; however, there were no Cyanobacterial blooms in the EM group ponds throughout the culture period. Compared with the M group ponds, the EM group ponds, which had submerged hydrophytes, had significantly decreased concentrations of TP, TN, and CODMn, but significantly increased DO concentrations throughout the experimental period. Moreover, ecological aquaculture with submerged macrophytes showed strong effects on the phytoplankton and bacterial community compositions. In particular, the M group ponds had higher phytoplankton density and mainly included Cyanobacteria, whereas the EM group had lower phytoplankton density and mainly included Chlorophyta. Moreover, higher alpha diversity, as determined by Ace and Simpson index values, was detected for bacterial communities in the EM group ponds. Furthermore, PCoA clearly grouped the bacterial communities according to the two culture modes throughout the culture period. These results indicate that ecological aquaculture with submerged macrophytes can improve water quality, control Cyanobacterial blooms, and affect the diversity and composition of bacterial communities. These valuable effects seem to be beneficial and consistent to maintaining aquaculture ecosystem stability.
Collapse
Affiliation(s)
- Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Zhaowei Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jun Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Gangchuan Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Gangchuan Xu, ✉
| |
Collapse
|
2
|
Mondal H, Thomas J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1971-2000. [PMID: 35528247 PMCID: PMC9059915 DOI: 10.1007/s10499-022-00884-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Globally, aquaculture has faced serious economic problems due to bacterial, viral, and various other infectious diseases of different origins. Even though such diseases are being detected and simultaneously treated with several therapeutic and prophylactic methods, the broad-spectrum activity of vaccines plays a vital role as a preventive measure in aquaculture. However, treatments like use of antibiotics and probiotics seem to be less effective when new mutant strains develop and disease causing pathogens become resistant to commonly used antibiotics. Therefore, vaccines developed by using recent advanced molecular techniques can be considered as an effective way of treating disease causing pathogens in aquatic organisms. The present review emphasizes on the current advances in technology and future outlook with reference to different types of vaccines used in the aquaculture industries. Beginning with traditional killed/inactivated and live attenuated vaccines, this work culminates in the review of modern new generation ones including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent vaccines.
Collapse
Affiliation(s)
- Haimanti Mondal
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
3
|
Smyrli M, Anka IZ, Koutsoni O, Dotsika E, Kyriazis ID, Pavlidis M, Katharios P. Development of autogenous vaccines for farmed European seabass against Aeromonas veronii using zebrafish as a model for efficacy assessment. FISH & SHELLFISH IMMUNOLOGY 2022; 123:381-387. [PMID: 35318138 DOI: 10.1016/j.fsi.2022.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Aeromonas veronii bv. sobria is an emerging pathogen for the European seabass cultured in the Aegean Sea (Mediterranean) causing significant problems in the Greek and Turkish aquaculture industry since no licensed vaccine is currently available for the disease. A bivalent vaccine was developed based on two phenotypically distinct strains of the pathogen, PDB (motile, pigment-producing strain) and NS (non-motile, non-pigment-producing). The two strains comprising the bivalent vaccine were evaluated as monovalent products in zebrafish before the seabass trials. Challenges using the homologous or the heterologous strain showed that both vaccines were protective with RPS values ranging between 66 and 100% in zebrafish. The bivalent vaccine was then tested in European seabass following dip or intraperitoneal administration. Efficacy was evaluated separately against both strains comprising the bivalent vaccine. Dip vaccination applied to juvenile seabass of 2.5 g average weight provided protection following challenge tests 30 days post vaccination only in one of the two strains tested (strain PDB, RPS: 88%). This was also the case in the injection vaccination of adult seabass of 60 g average weight where the vaccine was effective only against the PDB strain (RPS: 63%). High antibody titers against both strains were found at 30 and 60 days after intraperitoneal vaccination in the adult seabass. The use of zebrafish as a model for vaccine development for aquaculture species is discussed.
Collapse
Affiliation(s)
- Maria Smyrli
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece; Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Former American Base of Gournes, Heraklion, 71500, Greece
| | - Ishrat Zahan Anka
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece; Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Olga Koutsoni
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece
| | - Eleni Dotsika
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece
| | - Ioannis D Kyriazis
- Hellenic Pasteur Institute, Department of Microbiology, Laboratory of Cellular Immunology, Greece; University of Thessaly, Department of Biochemistry and Biotechnology, Greece
| | - Michail Pavlidis
- University of Crete, Department of Biology, Voutes University Campus, Heraklion, 70013, Greece
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Former American Base of Gournes, Heraklion, 71500, Greece.
| |
Collapse
|
4
|
Mugetti D, Varello K, Pastorino P, Tomasoni M, Menconi V, Bozzetta E, Dondo A, Prearo M. Investigation of Potential Reservoirs of Non-Tuberculous Mycobacteria in a European Sea Bass ( Dicentrarchus labrax) Farm. Pathogens 2021; 10:pathogens10081014. [PMID: 34451479 PMCID: PMC8401025 DOI: 10.3390/pathogens10081014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Fish mycobacteriosis is a widespread global problem caused by species of non-tuberculous mycobacteria (NTM). Mycobacterium marinum is one of the species most often involved in disease episodes of aquarium and farmed fish. Since there is currently no available effective therapy or vaccine, a prompt search for routes of entry is key to limiting the damage induced by the disease. Here we report a case of mycobacteriosis follow up in a European sea bass (Dicentrarchus labrax) farm located in Northern Italy, in which environmental samples and newly added fish batches were analyzed. Samples from fish present on the farm, sediment, and periphyton all resulted positive for M. marinum, whereas the new fish batches and the water samples resulted negative. The environmental resistance of NTM (alcohol-acid resistance, biofilm formation) and the lack of prophylactic and therapeutic strategies make these diseases difficult to manage. Prompt identification of biotic and abiotic reservoirs, combined with good zootechnical hygiene practices, are the most effective measures to control fish mycobacteriosis in intensive farms.
Collapse
|
5
|
Miccoli A, Manni M, Picchietti S, Scapigliati G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines (Basel) 2021; 9:140. [PMID: 33578766 PMCID: PMC7916455 DOI: 10.3390/vaccines9020140] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, the aquaculture sector has experienced a 527% growth, producing 82 million tons for a first sale value estimated at 250 billion USD. Infectious diseases caused by bacteria, viruses, or parasites are the major causes of mortality and economic losses in commercial aquaculture. Some pathologies, especially those of bacterial origin, can be treated with commercially available drugs, while others are poorly managed. In fact, despite having been recognized as a useful preventive measure, no effective vaccination against many economically relevant diseases exist yet, such as for viral and parasitic infections. The objective of the present review is to provide the reader with an updated perspective on the most significant and innovative vaccine research on three key aquaculture commodities. European sea bass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), and Atlantic salmon (Salmo salar) were chosen because of their economic relevance, geographical distinctiveness, and representativeness of different culture systems. Scientific papers about vaccines against bacterial, viral, and parasitic diseases will be objectively presented; their results critically discussed and compared; and suggestions for future directions given.
Collapse
|
6
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|