1
|
Zhang Z, Pan Z, Fan L, Su Y, Fei J. Comparative Metabolomics Reveals Changes in the Metabolic Pathways of Ampicillin- and Gentamicin-Resistant Staphylococcus aureus. J Proteome Res 2024; 23:4480-4494. [PMID: 39294851 DOI: 10.1021/acs.jproteome.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) Staphylococcus aureus strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in S. aureus promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in S. aureus.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
2
|
Li S, Cui X, Cao Y, Sun J. Extracellular ATP- and adenosine-mediated purinergic signaling modulates inducible nitric oxide synthase (iNOS) gene expression, enzyme activity and nitric oxide production in common carp (Cyprinus carpio) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109469. [PMID: 38423488 DOI: 10.1016/j.fsi.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Inducible nitric oxide (NO) synthase (iNOS) is a key immune mediator for production of inflammatory mediator NO from l-arginine. Tight regulation of iNOS expression and enzyme activity is critical for proper NO productions under inflammation and infection conditions. However, the regulatory mechanism for iNOS expression and enzyme activity in fish remains largely unknown. Here, we show that extracellular ATP treatment significantly up-regulates iNOS gene expression and enzyme activity, and consequently leads to enhanced NO production in Cyprinus carpio head kidney macrophages (HKMs). We further show that the extracellular ATP-induced iNOS enzyme activity and NO production can be attenuated by pharmacological inhibition of the ATP-gated P2X4 and P2X7 receptors with their respective specific antagonists, but enhanced by overexpression of P2X4 and P2X7 receptors in grass carp ovary cells. In contrast, adenosine administration significantly reduces iNOS gene expression, enzyme activity and NO production in carp HKMs, and these inhibitory effects can be reversed by pharmacological inhibition of adenosine receptors with the antagonist XAC. Furthermore, LPS- and poly(I:C)-induced iNOS gene expression, enzyme activity, and NO production are significantly attenuated by blockade of P2X4 and P2X7 receptors with their respective specific antagonists in carp HKMs, while overexpression of P2X and P2X7 receptors results in enhanced iNOS gene expression, enzyme activity and NO production in LPS- and poly(I:C)-treated grass carp ovary cells. Taken together, we firstly report an opposite role of extracellular ATP/adenosine-mediated purinergic signaling in modulating iNOS-NO system activity in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Xiwen Cui
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yue Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
3
|
Wang Y, Hou Y, Liu X, Lin N, Dong Y, Liu F, Xia W, Zhao Y, Xing W, Chen J, Chen C. Rapid visual nucleic acid detection of Vibrio alginolyticus by recombinase polymerase amplification combined with CRISPR/Cas13a. World J Microbiol Biotechnol 2023; 40:51. [PMID: 38146036 DOI: 10.1007/s11274-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Hou
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Xinping Liu
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Na Lin
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Youyou Dong
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China
| | - Fei Liu
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China
| | - Wenrong Xia
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Bei Jing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Bei Jing Institute of Basic Medical Sciences, Beijing, China.
| | - Jin Chen
- Institute of Clinical Laboratory, The 900Th Hospital, Xiamen University, Fuzhou, China.
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Changguo Chen
- Department of Clinical Laboratory, The Six Medical Center of PLA General Hospital, No. 6 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
4
|
Xiang J, Li MY, Li H. Aspartate metabolic flux promotes nitric oxide to eliminate both antibiotic-sensitive and -resistant Edwardsiella tarda in zebrafish. Front Immunol 2023; 14:1277281. [PMID: 37885884 PMCID: PMC10598754 DOI: 10.3389/fimmu.2023.1277281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Metabolic reprogramming potentiates host protection against antibiotic-sensitive or -resistant bacteria. However, it remains unclear whether a single reprogramming metabolite is effective enough to combat both antibiotic-sensitive and -resistant bacteria. This knowledge is key for implementing an antibiotic-free approach. Methods The reprogramming metabolome approach was adopted to characterize the metabolic state of zebrafish infected with tetracycline-sensitive and -resistant Edwardsiella tarda and to identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. Results Aspartate was identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. Exogenous aspartate protects zebrafish against infection caused by tetracycline-sensitive and -resistant E. tarda. Mechanistically, exogenous aspartate promotes nitric oxide (NO) biosynthesis. NO is a well-documented factor of promoting innate immunity against bacteria, but whether it can play a role in eliminating both tetracycline-sensitive and -resistant E. tarda is unknown. Thus, in this study, aspartate was replaced with sodium nitroprusside to provide NO, which led to similar aspartate-induced protection against tetracycline-sensitive and -resistant E. tarda. Discussion These findings support the conclusion that aspartate plays an important protective role through NO against both types of E. tarda. Importantly, we found that tetracycline-sensitive and -resistant E. tarda are sensitive to NO. Therefore, aspartate is an effective reprogramming metabolite that allows implementation of an antibiotic-free approach against bacterial pathogens.
Collapse
Affiliation(s)
- Jiao Xiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min-yi Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Zeng Y, Deng B, Kang Z, Araujo P, Mjøs SA, Liu R, Lin J, Yang T, Qu Y. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114871. [PMID: 37030048 DOI: 10.1016/j.ecoenv.2023.114871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. Although many marine crustaceans are highly susceptible to MPs pollution, the toxicological effects and mechanisms of MPs on crustaceans are poorly understood. The current study focused on the impacts of MPs accumulation in shrimp Litopenaeus vannamei at the behavioral, histological and biochemical levels. The results demonstrated the accumulation of polystyrene MPs in various organs of L. vannamei, with highest MPs abundance in the hepatopancreas. The MPs accumulated in shrimp caused growth inhibition, abnormal swimming behavior and reduced swimming performance of L. vannamei. Following MPs exposure, oxidative stress and lipid peroxidation were also observed, which were strongly linked to attenuated swimming activity of L. vannamei. The above MPs-induced disruption in balance of antioxidant system triggered the hepatopancreatic damage in L. vannamei, which was exacerbated with increasing MPs concentrations (from 0.02 to 1 mg L-1). Furthermore, metabolomics revealed that MPs exposure resulted in alterations of metabolic profiles and disturbed glycolysis, lipolysis and amino acid metabolism pathways in hepatopancreas of L. vannamei. This work confirms and expands the knowledge on the sublethal impacts and toxic modes of action of MPs in L. vannamei.
Collapse
Affiliation(s)
- Yingxu Zeng
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China.
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zixin Kang
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Pedro Araujo
- Institute of Marine Research, 5817 Bergen, Norway
| | - Svein Are Mjøs
- Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| | - Ruina Liu
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Jianhui Lin
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Tao Yang
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Yuangao Qu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
6
|
Thepsuthammarat K, Reungsang A, Plangklang P. Microalga Coelastrella sp. Cultivation on Unhydrolyzed Molasses-Based Medium towards the Optimization of Conditions for Growth and Biomass Production under Mixotrophic Cultivation. Molecules 2023; 28:molecules28083603. [PMID: 37110836 PMCID: PMC10145047 DOI: 10.3390/molecules28083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Improving biomass production with the utilization of low-cost substrate is a crucial approach to overcome the hindrance of high cost in developing large-scale microalgae production. The microalga Coelastrella sp. KKU-P1 was mixotrophically cultivated using unhydrolyzed molasses as a carbon source, with the key environmental conditions being varied in order to maximize biomass production. The batch cultivation in flasks achieved the highest biomass production of 3.81 g/L, under an initial pH 5.0, a substrate to inoculum ratio of 100:3, an initial total sugar concentration of 10 g/L, and a sodium nitrate concentration of 1.5 g/L with continuous light illumination at 23.7 W/m2. The photobioreactor cultivation results indicated that CO2 supplementation did not improve biomass production. An ambient concentration of CO2 was sufficient to promote the mixotrophic growth of the microalga as indicated by the highest biomass production of 4.28 g/L with 33.91% protein, 46.71% carbohydrate, and 15.10% lipid. The results of the biochemical composition analysis suggest that the microalgal biomass obtained is promising as a source of essential amino acids and pigments as well as saturated and monounsaturated fatty acids. This research highlights the potential for bioresource production via microalgal mixotrophic cultivation using untreated molasses as a low-cost raw material.
Collapse
Affiliation(s)
- Kamolwan Thepsuthammarat
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Pensri Plangklang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Zhu Y, Xie Q, Ye J, Wang R, Yin X, Xie W, Li D. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3068. [PMID: 36833759 PMCID: PMC9965259 DOI: 10.3390/ijerph20043068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1'-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ruzhen Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xudong Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
8
|
Ren T, Liu J, Liu K, Zhang Z, Ma Z, Dan SF, Lan Z, Lu M, Fang H, Zhang Y, Zhu P, Liao Y. Cloning and expression of two anti-lipopolysaccharide factors in Eriocheir hepuensis under Vibrio alginolyticus-induced stress. JOURNAL OF FISH BIOLOGY 2023; 102:349-357. [PMID: 36317548 DOI: 10.1111/jfb.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Anti-lipopolysaccharide factors (ALFs) are small basic proteins that exhibit broad-spectrum antiviral properties and antibacterial activity. In this research, we cloned and studied two Eriocheir hepuensis ALFs, EhALF2 and EhALF3. The results showed that the open reading frame lengths of EhALF2 and EhALF3 were 363 and 372 bp, encoding 120 and 123 amino acids, respectively. Their sequences both contained an Lipopolysaccharide-binding (LPS) domain and were highly similarity to other crab ALFs. qRT-PCR showed that EhALF2 and EhALF3 were detected in nine examined tissues and were expressed the highest in the haemocytes. After challenge with Vibrio alginolyticus, in the hepatopancreas, the expression levels of EhALF2 and EhALF3 reached the highest levels at 48 and 3 h, respectively. In the heart, the expression levels of the two genes were highest at 12 h. These results indicate that EhALF2 and EhALF3 could participate in the resistance of E. hepuensis to V. alginolyticus stress within a short time. They have potential applications in the study of environmental stress markers and disease-resistance factors in E. hepuensis.
Collapse
Affiliation(s)
| | - Jinxia Liu
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Ke Liu
- Beibu Gulf University, Qinzhou, Guangxi, China
- School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | | | - Zihang Ma
- Beibu Gulf University, Qinzhou, Guangxi, China
| | | | - Zhenyu Lan
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Min Lu
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Huaiyi Fang
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yan Zhang
- Beibu Gulf University, Qinzhou, Guangxi, China
| | - Peng Zhu
- Beibu Gulf University, Qinzhou, Guangxi, China
- School of Marine Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | | |
Collapse
|
9
|
Pagliaro M, Lino C, Pizzone DM, Mauriello F, Russo M, Muscolo A, Ciriminna R, Avellone G. Amino Acids in New Organic Fertilizer AnchoisFert. ChemistrySelect 2022. [DOI: 10.1002/slct.202203665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR 90146 Palermo Italy
| | - Claudia Lino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche and ATeN Center Università di Palermo 90123 Palermo Italy
| | - Daniela Maria Pizzone
- Dipartimento di Ingegneria Civile dell'Energia dell'Ambiente e dei Materiali Università degli Studi “Mediterranea” di Reggio Calabria 89122 Reggio Calabria Italy
| | - Francesco Mauriello
- Dipartimento di Ingegneria Civile dell'Energia dell'Ambiente e dei Materiali Università degli Studi “Mediterranea” di Reggio Calabria 89122 Reggio Calabria Italy
| | - Mariateresa Russo
- Dipartimento di Agraria Università degli Studi “Mediterranea” di Reggio Calabria 89122 Reggio Calabria Italy
| | - Adele Muscolo
- Dipartimento di Agraria Università degli Studi “Mediterranea” di Reggio Calabria 89122 Reggio Calabria Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR 90146 Palermo Italy
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche and ATeN Center Università di Palermo 90123 Palermo Italy
| |
Collapse
|
10
|
Wang Z, Aweya JJ, Yao D, Zheng Z, Wang C, Zhao Y, Li S, Zhang Y. Taurine metabolism is modulated in Vibrio-infected Penaeus vannamei to shape shrimp antibacterial response and survival. MICROBIOME 2022; 10:213. [PMID: 36464721 PMCID: PMC9721036 DOI: 10.1186/s40168-022-01414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.
Collapse
Affiliation(s)
- Zhongyan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
11
|
Yu J, Wang X, Qian S, Liu P, Li X, Li J. Exposure to nitrate induces alterations in blood parameter responses, liver immunity, and lipid metabolism in juvenile turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106280. [PMID: 36041359 DOI: 10.1016/j.aquatox.2022.106280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3-) pollution of waterbodies has attracted significant global attention as it poses a serious threat to aquatic organisms and human beings. This study aimed to evaluate the role of NO3-, an end product of biological nitrification processes, in immune status and lipid metabolism to have a comprehensive understanding of its toxic effects on fishes. Therefore, in this work, juvenile turbot (Scophthalmus maximus) were subjected to four nominal concentrations of NO3- (i.e., 0, 50, 200, 400 mg/L of NO3--N) for a 60-day period. The results indicated that increased exposure to NO3- (200 and/or 400 mg/L) enhanced the concentrations of plasma heat shock protein concentrations (HSP70), complement component 3 (C3), complement component 4 (C4), immunoglobulin M (IgM) and lysozyme (LYS), which meant that NO3-caused fluctuations in the plasma immune system. Higher exposure to NO3- (200 and/or 400 mg/L) also caused significant enhancements in plasma glutamic pyruvic transaminase (GPT), as well as glutamic oxaloacetic transaminase (GOT) activity. Furthermore, NO3- exposure resulted in upregulation of liver TNF-α, IL-1β, HSP70, HSP90, and LYS. Additionally, the results suggested that NO3-exposure caused a certain degree of histological damage and inflammation in the liver and activated the immune defense processes of juvenile turbot. Furthermore, the mRNA expression levels of certain genes associated with lipid metabolism (peroxisome proliferator-activated receptor-alpha [PPAR-α], carnitine palmitoyltransferase 1[CPT1], liver X receptor [LXR] together with sterol regulatory element binding protein-1 [SREBP-1]) increased significantly within fish liver exposed to 200/400 mg/L NO3--N treatments. Finally, the results obtained from the analysis of the integrated biological responses version 2 (IBRv2) also confirmed the toxic effects of NO3- on juvenile turbot. According to these findings, it can be found that NO3- emission in the aquatic environment needs to be strictly controlled, as it may cause immune and lipid metabolism disorders in fish.
Collapse
Affiliation(s)
- Jiachen Yu
- Jiangsu Key Laboratory of Marine Biotechnology/Laboratory of Pathology and Immunology of Aquatic Animals, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Biotechnology/Laboratory of Pathology and Immunology of Aquatic Animals, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Shiyue Qian
- Jiangsu Key Laboratory of Marine Biotechnology/Laboratory of Pathology and Immunology of Aquatic Animals, Jiangsu Ocean University, Lianyungang 222005, China
| | - Pengfei Liu
- Jiangsu Key Laboratory of Marine Biotechnology/Laboratory of Pathology and Immunology of Aquatic Animals, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xian Li
- College of Fisheries, Ocean University of China, Qingdao 266003, China.
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
12
|
Baharum SN, Mayalvanan Y, Natnan ME, Azizan KA, Bunawan H, Him NRN, Low CF, Chong CM. LC-qTOF-MS analysis of fish immune organs reveals the distribution of amino acids in response to metabolic adaptation of the survival phenotype in grouper against Vibrio infection. 3 Biotech 2022; 12:206. [PMID: 35935547 PMCID: PMC9349327 DOI: 10.1007/s13205-022-03269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Epinephelus fuscoguttatus is economically crucial to various Southeast Asia countries where they are reared in fish farms to meet the demand for supply. However, a systemic infectious disease known as vibriosis has steadily and extensively affected the fish farming industry. The disease is caused by Vibrio spp., which are pathogenic gram-negative bacteria. This study focused on understanding the host's metabolic adaptation against Vibrio vulnificus infection, which features a survival phenotype, by profiling the metabolites in grouper fingerlings that survived the experimental infection. Mapping of the pathways is crucial to explain the roles of metabolites in fish immunity. A solvent extraction method was used on the grouper's immune organs (gills, liver and spleen) prior to Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-qTOF-MS) analysis. The metabolites identified in fingerlings that survived experimental infections were mostly amino acids (primary metabolites). Glutamine (0.44%), alanine (0.68%), phenylalanine (2.63%) and tyrosine (2.60%) were highly abundant in survived-infected gills. Aspartic acid (13.57%) and leucine (4.01%) were highly abundant in the livers of the survived-infected fish and lysine was highly abundant in both gills (2.94%) and liver (3.64%) of the survived-infected fish. Subsequent bioinformatics analysis revealed the involvement of the identified functional amino acids in various immune-related pathways. The current findings facilitate the comprehension of the metabolic adaptation of grouper fingerlings that exhibited a survival phenotype against Vibrio infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03269-1.
Collapse
Affiliation(s)
- Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Yosmetha Mayalvanan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Hamidun Bunawan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Nik Raikhan Nik Him
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450 Selangor Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600 Selangor Malaysia
| | - Chou-Min Chong
- Aquaculture Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 Selangor Malaysia
| |
Collapse
|
13
|
Cao Y, Kou T, Peng L, Munang'andu HM, Peng B. Fructose Promotes Crucian Carp Survival Against Aeromonas hydrophila Infection. Front Immunol 2022; 13:865560. [PMID: 35386717 PMCID: PMC8979172 DOI: 10.3389/fimmu.2022.865560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Aquatic food is becoming an important food source that provides micronutrients to human beings. The decline of wild aquatic animals makes aquaculture become increasingly important to play this role. However, infectious diseases, especially bacterial infection, represent severe threat to aquaculture, which causes huge economic loss. Meanwhile, strategies in managing bacterial infection in an antibiotic-independent way are still lacking. In this study, we monitor the metabolomic shift of crucian carp upon Aeromonas hydrophila infection. We find that the metabolism of the fish that died of infection is distinct from the ones that survived. By multivariate analysis, we identify fructose as a crucial biomarker whose abundance is significantly different from the dying and surviving groups where the surviving group has a higher content of fructose than the dying group. Exogenous supplementation of fructose increases fish survival rate by 27.2%. Quantitative gene expression analysis demonstrated that fructose enhances the expression of lysozyme and complement 3 expression, which is also confirmed in the serum level. Furthermore, the augmented lysozyme and C3 levels enhance serum cell lytic activity which contribute to the reduced bacterial load in vivo. Thus, our study demonstrates a metabolism-based approach to manage bacterial infection through modulating immune response to clear bacterial infection.
Collapse
Affiliation(s)
- Yunchao Cao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianshun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liaotian Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Early Immune Modulation in European Seabass (Dicentrarchus labrax) Juveniles in Response to Betanodavirus Infection. FISHES 2022. [DOI: 10.3390/fishes7020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The early host–pathogen interaction between European seabass (Dicentrarchus labrax) and Betanodavirus was examined by using juvenile fish infected intramuscularly with RGNNV (red-spotted grouper nervous necrosis virus). The time course selected for sampling (0–144 h post-infection (hpi)) covered the early stages of infection, with hematological, antioxidant and immunological responses examined. Early activation of the host’s immune system was seen in the first few hours post-infection (6 to 9 hpi), as evidenced by an increase in tnfα, cd28 and c3 expression in the head kidney of infected fish. Most hematological parameters that were examined showed significant differences between sampling times, including differences in the number of thrombocytes and various leukocyte populations. The plasma lysozyme concentration decreased significantly over the course of the trial, and most antioxidant parameters examined in the liver showed significant differences over the infection period. At 144 hpi, peak expression of tnfα and il-1β coincided with the appearance of disease symptoms, peak levels of virus in the brain and high levels of fish mortality. The results of the study show the importance of analyzing the early interactions between European seabass and Betanodavirus to establish early indicators of infection to prevent more severe outcomes of the infection from occurring.
Collapse
|
15
|
Yang MJ, Jiang M, Peng XX, Li H. Myo-Inositol Restores Tilapia's Ability Against Infection by Aeromonas sobria in Higher Water Temperature. Front Immunol 2021; 12:682724. [PMID: 34566956 PMCID: PMC8462736 DOI: 10.3389/fimmu.2021.682724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection presents severe challenge to tilapia farming, which is largely influenced by water temperature. However, how water temperature determines tilapias’ survival to infection is not well understood. Here, we address this issue from the perspective of metabolic state. Tilapias were more susceptible to Aeromonas sobria infection at 33°C than at 18°C, which is associated with differential metabolism of the fish. Compared to the metabolome of tilapia at 18°C, the metabolome at 33°C was characterized with increased an tricarboxylic acid cycle and a reduced level of myo-inositol which represent the most impactful pathway and crucial biomarker, respectively. These alterations were accompanied with the elevated transcriptional level of 10 innate immune genes with infection time, where il-1b, il-6, il-8, and il-10 exhibited a higher expression at 33°C than at 18°C and was attenuated by exogenous myo-inositol in both groups. Interestingly, exogenous myo-inositol inactivated the elevated TCA cycle via inhibiting the enzymatic activity of succinate dehydrogenase and malate dehydrogenase. Thus, tilapias showed a higher survival ability at 33°C. Our study reveals a previously unknown relationship among water temperature, metabolic state, and innate immunity and establishes a novel approach to eliminate bacterial pathogens in tilapia at higher water temperature.
Collapse
Affiliation(s)
- Man-Jun Yang
- State Key Laboratory of Bio-Control, School of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, China.,Tibet Vocational Technical College, Lhasa, China
| | - Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
An L, Lin L, Wang S, Xie T, Yang Y, Zhai W, Du L, Li W, Shen C, Zhang Y, Shan J. Plasma characteristic metabolites of pediatric community-acquired pneumonia in traditional Chinese medicine syndrome differentiation. Anat Rec (Hoboken) 2021; 304:2579-2591. [PMID: 34549900 DOI: 10.1002/ar.24767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Community-acquired pneumonia (CAP) is the leading cause of lower respiratory tract infections in children. Heat syndrome (HS) and cold syndrome (CS) are two main syndrome types of pediatric CAP in traditional Chinese medicine (TCM). This study aimed to identify plasma metabolic profiles in pediatric CAP and to further select potential biomarkers to distinguish between HS and CS. An ultra-performance liquid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry method was applied to plasma samples of 296 patients and 55 healthy controls (HC). The samples were divided into the discovery group (n = 213, HS = 160, CS = 23, HC = 30) and the validation group (n = 138, HS = 93, CS = 20, HC = 25). The orthogonal partial least-squares discriminant analysis, the value of fold change, and Kruskal-Wallis test with false discovery rate correction (q-value <0.05) were applied to identify differential plasma metabolites. The area under the ROC curve (AUC) was used to evaluate the diagnostic performance of the screened metabolites. The results showed that the plasma levels of aspartic acid, phenylalanine, arginine, lysoPC20:1, lysoPE16:0, lysoPE18:0, and PE (16:0_22:6) were increased in CS compared with HC. The plasma levels of PC (18:1_18:1), PC (20:4_20:4), PE (16:0_18:2), lysoPE20:4, lysoPE18:2, and lysoPE22:6 were decreased, whereas, the plasma level of ceramide (d18:1_24:1) was increased in HS compared with HC. There were 13 differential metabolites in CS (AUC = 0.995) and 15 differential metabolites in HS (AUC = 0.954), compared with HC. A panel of seven biomarkers, including LysoPC20:1, lysoPE16:0, lysoPE18:2, lysoPE20:4, lysoPE22:6, PC (18:1_18:1), and PC (20:4_20:4) showed good discrimination between HS and CS with an AUC of 0.982. Altered plasma amino acids and lipids may provide an objective basis for TCM syndrome differentiation in pediatric CAP.
Collapse
Affiliation(s)
- Li An
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- Department of Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wensheng Zhai
- Department of Pediatrics of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Du
- Department of Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Weiwei Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, California, USA
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Serine Metabolism Tunes Immune Responses To Promote Oreochromis niloticus Survival upon Edwardsiella tarda Infection. mSystems 2021; 6:e0042621. [PMID: 34427522 PMCID: PMC8407201 DOI: 10.1128/msystems.00426-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Overactive immune response is a critical factor triggering host death upon bacterial infection. However, the mechanism behind the regulation of excessive immune responses is still largely unknown, and the corresponding control and preventive measures are still to be explored. In this study, we find that Nile tilapia, Oreochromis niloticus, that died from Edwardsiella tarda infection had higher levels of immune responses than those that survived. Such immune responses are strongly associated with metabolism that was altered at 6 h postinfection. By gas chromatography-mass spectrometry-based metabolome profiling, we identify glycine, serine, and threonine metabolism as the top three of the most impacted pathways, which were not properly activated in the fish that died. Serine is one of the crucial biomarkers. Exogenous serine can promote O. niloticus survival both as a prophylactic and therapeutic upon E. tarda infection. Our further analysis revealed exogenous serine flux into the glycine, serine, and threonine metabolism and, more importantly, the glutathione metabolism via glycine. The increased glutathione synthesis could downregulate reactive oxygen species. Therefore, these data together suggest that metabolic modulation of immune responses is a potential preventive strategy to control overactive immune responses. IMPORTANCE Bacterial virulence factors are not the only factors responsible for host death. Overactive immune responses, such as cytokine storm, contribute to tissue injury that results in organ failure and ultimately the death of the host. Despite the recent development of anti-inflammation strategies, the way to tune immune responses to an appropriate level is still lacking. We propose that metabolic modulation is a promising approach in tuning immune responses. We find that the metabolomic shift at as early as 6 h postinfection can be predictive of the consequences of infection. Serine is a crucial biomarker whose administration can promote host survival upon bacterial infection either in a prophylactic or therapeutic way. Further analysis demonstrated that exogenous serine promotes the synthesis of glutathione, which downregulates reactive oxygen species to dampen immune responses. Our study exemplifies that the metabolite(s) is a potential therapeutic reagent for overactive immune response during bacterial infection.
Collapse
|
18
|
Jiang M, Yang LF, Zheng J, Chen ZG, Peng B. Maltose promotes crucian carp survival against Aeromonas sobrial infection at high temperature. Virulence 2021; 11:877-888. [PMID: 32698656 PMCID: PMC7549911 DOI: 10.1080/21505594.2020.1787604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Temperature influences fish’s susceptibility to infectious disease through an immune response. However, the mechanism underlying this regulation is yet to be elucidated. In this study, we compared the susceptibility of crucian carp that were grown at 18°C and 33°C, respectively, to Aeromonas sobrial infection and found that crucian carp was more susceptible when grown at 33°C. These distinct susceptibilities of fish at different temperatures to infection may partially be explained by their differences in the metabolism as revealed by comparative metabolomics profiling: crucian carp demonstrated enhanced TCA cycle but reduced fatty acid biosynthesis; Our study also found that maltose was the most suppressed metabolite in fish grown at 33°C. Importantly, exogenous injection of maltose enhances crucian carp survival grown at 33°C by 30%. Further study showed that exogenous maltose downregulated the production of several cytokines but enhanced the lysozyme (lyz) and complement component c3, which involves the humoral innate immunity. Our results suggest that maltose promotes the survival of crucian carp likely through fine tuning the immune gene expression, and this finding provides a novel approach to manage bacterial infection.
Collapse
Affiliation(s)
- Ming Jiang
- The Third Affiliated Hospital, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City , Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Li-Fen Yang
- The Third Affiliated Hospital, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City , Guangzhou, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zhuang-Gui Chen
- The Third Affiliated Hospital, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City , Guangzhou, China
| | - Bo Peng
- The Third Affiliated Hospital, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City , Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| |
Collapse
|
19
|
Kuang SF, Chen YT, Chen JJ, Peng XX, Chen ZG, Li H. Synergy of alanine and gentamicin to reduce nitric oxide for elevating killing efficacy to antibiotic-resistant Vibrio alginolyticus. Virulence 2021; 12:1737-1753. [PMID: 34251979 PMCID: PMC8276662 DOI: 10.1080/21505594.2021.1947447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study explored the cooperative effect of both alanine (Ala) and gentamicin (Gent) on metabolic mechanisms by which exogenous Ala potentiates Gent to kill antibiotic-resistant Vibrio alginolyticus. To test this, GC-MS-based metabolomics was used to characterize Ala-, Gent- and both-induced metabolic profiles, identifying nitric oxide (NO) production pathway as the most key clue to understand metabolic mechanisms. Gent, Ala and both led to low, lower and lowest activity of total nitric oxide synthase (tNOS) and level of NO, respectively. NOS promoter L-arginine and inhibitor NG-Monomethyl-L-arginine inhibited and promoted the killing, respectively, with the elevation and decrease of NOS activity and NO level. The present study further showed that CysJ is the enzyme-producing NO in V. alginolyticus. These results indicate that the cooperative effect of Ala and Gent causes the lowest NO, which plays a key role in Ala-potentiated Gent-mediated killing.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Yue-Tao Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Jia-Jie Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Li L, Yang M, Zhu WC, Liu XJ, Peng XX, Li H. Functionally ampicillin-stressed proteomics reveals that AdhE regulates alcohol metabolism for antibiotic resistance in Escherichia coli. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Ye J, Su Y, Peng X, Li H. Reactive Oxygen Species-Related Ceftazidime Resistance Is Caused by the Pyruvate Cycle Perturbation and Reverted by Fe 3 + in Edwardsiella tarda. Front Microbiol 2021; 12:654783. [PMID: 33995314 PMCID: PMC8113649 DOI: 10.3389/fmicb.2021.654783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) are related to antibiotic resistance and have been reported in bacteria. However, whether ROS contribute to ceftazidime resistance and plays a role in ceftazidime-mediated killing is unknown. The present study showed lower ROS production in ceftazidime-resistant Edwardsiella tarda (LTB4-RCAZ) than that in LTB4-sensitive E. tarda (LTB4-S), two isogenic E. tarda LTB4 strains, which was related to bacterial viability in the presence of ceftazidime. Consistently, ROS promoter Fe3+ and inhibitor thiourea elevated and reduced the ceftazidime-mediated killing, respectively. Further investigation indicated that the reduction of ROS is related to inactivation of the pyruvate cycle, which provides sources for ROS biosynthesis, but not superoxide dismutase (SOD) and catalase (CAT), which degrade ROS. Interestingly, Fe3+ promoted the P cycle, increased ROS biosynthesis, and thereby promoted ceftazidime-mediated killing. The Fe3+-induced potentiation is generalizable to cephalosporins and clinically isolated multidrug-resistant pathogens. These results show that ROS play a role in bacterial resistance and sensitivity to ceftazidime. More importantly, the present study reveals a previously unknown mechanism that Fe3+ elevates ROS production via promoting the P cycle.
Collapse
Affiliation(s)
- Jingzhou Ye
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Su
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuanxian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Yang DX, Yang H, Cao YC, Jiang M, Zheng J, Peng B. Succinate Promotes Phagocytosis of Monocytes/Macrophages in Teleost Fish. Front Mol Biosci 2021; 8:644957. [PMID: 33937328 PMCID: PMC8082191 DOI: 10.3389/fmolb.2021.644957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Development of immunity-based strategy to manage bacterial infection is urgently needed in aquaculture due to the widespread of antibiotic-resistant bacteria. Phagocytosis serves as the first line defense in innate immunity that engulfs bacteria and restricts their proliferations and invasions. However, the mechanism underlying the regulation of phagocytosis is not fully elucidated and the way to boost phagocytosis is not yet explored. In this manuscript, we profiled the metabolomes of monocytes/macrophages isolated from Nile tilapia, prior and after phagocytosis on Vibrio alginolyticus. Monocytes/macrophages showed a metabolic shift following phagocytosis. Interestingly, succinate was accumulated after phagocytosis and was identified as a crucial biomarker to distinguish before and after phagocytosis. Exogenous succinate increased the phagocytotic rate of monocytes/macrophages in a dose-dependent manner. This effect was dependent on the TCA cycle as the inhibitor of malonate that targets succinate dehydrogenase abrogated the effect. Meanwhile, exogenous succinate regulated the expression of genes associated with innate immune and phagocytosis. In addition, succinate-potentiated phagocytosis was applicable to both gram-negative and -positive cells, including V. alginolyticus, Edwardsiella tarda, Streptococcus agalactiae, and Streptococcus iniae. Our study shed light on the understanding of how modulation on host's metabolism regulates immune response, and this can be a potent therapeutic approach to control bacterial infections in aquaculture.
Collapse
Affiliation(s)
- Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yun-Chao Cao
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Ming Jiang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
23
|
Yang MJ, Xu D, Yang DX, Li L, Peng XX, Chen ZG, Li H. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 2021; 11:349-364. [PMID: 32316833 PMCID: PMC7199751 DOI: 10.1080/21505594.2020.1750123] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish’s metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host’s ability to fight bacterial infection.
Collapse
Affiliation(s)
- Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China.,Tibet Vocational Technical College, Lhasha, People's Republic of China
| | - Di Xu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Li S, Alfaro AC, Nguyen TV, Young T, Lulijwa R. An integrated omics approach to investigate summer mortality of New Zealand Greenshell™ mussels. Metabolomics 2020; 16:100. [PMID: 32915338 DOI: 10.1007/s11306-020-01722-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Green-lipped mussels, commercially known as Greenshell™ mussels (Perna canaliculus Gmelin 1791), contribute > $300 million to New Zealand's aquaculture exports. However, mortalities during summer months and potential pathogenic outbreaks threaten the industry. Thermal stress mechanisms and immunological responses to pathogen infections need to be understood to develop health assessment strategies and early warning systems. METHODS P. canaliculus were collected during a mortality event at a commercial aquaculture farm in Firth of Thames, New Zealand. Gill tissues from six healthy and six unhealthy mussels were excised and processed for metabolomic (GC-MS) and label-free proteomic (LC-MS) profiling. Univariate analyses were conducted separately on each data layer, with data being integrated via sparse multiple discriminative canonical correlation analysis. Pathway enrichment analysis was used to probe coordinated changes in functionally related metabolite sets. RESULTS Findings revealed disruptions of the tricarboxylic acid (TCA) cycle and fatty acid metabolism in unhealthy mussels. Metabolomics analyses also indicated oxidative stress in unhealthy mussels. Proteomics analyses identified under-expression of proteins associated with cytoskeleton structure and regulation of cilia/flagellum in gill tissues of unhealthy mussels. Integrated omics revealed a positive correlation between Annexin A4 and CCDC 150 and saturated fatty acids, as well as a negative correlation between 2-aminoadipic acid and multiple cytoskeletal proteins. CONCLUSIONS Our study demonstrates the ability of using integrative omics to reveal metabolic perturbations and protein structural changes in the gill tissues of stressed P. canaliculus and provides new insight into metabolite and protein interactions associated with incidences of summer mortality in this species.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
25
|
Jiang M, Yang L, Chen Z, Lai S, Zheng J, Peng B. Exogenous maltose enhances Zebrafish immunity to levofloxacin-resistant Vibrio alginolyticus. Microb Biotechnol 2020; 13:1213-1227. [PMID: 32364684 PMCID: PMC7264874 DOI: 10.1111/1751-7915.13582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the interplay between bacterial fitness, antibiotic resistance, host immunity and host metabolism could guide treatment and improve immunity against antibiotic-resistant pathogens. The acquisition of levofloxacin (Lev) resistance affects the fitness of Vibrio alginolyticus in vitro and in vivo. Lev-resistant (Lev-R) V. alginolyticus exhibits slow growth, reduced pathogenicity and greater resistance to killing by the host, Danio rerio (zebrafish), than Lev-sensitive (Lev-S) V. alginolyticus, suggesting that Lev-R V. alginolyticus triggers a weaker innate immune response in D. rerio than Lev-S V. alginolyticus. Differences were detected in the metabolome of D. rerio infected with Lev-S or Lev-R V. alginolyticus. Maltose, a crucial metabolite, is significantly downregulated in D. rerio infected with Lev-R V. alginolyticus, and exogenous maltose enhances the immune response of D. rerio to Lev-R V. alginolyticus, leading to better clearance of the infection. Furthermore, we demonstrate that exogenous maltose stimulates the host production of lysozyme and its binding to Lev-R V. alginolyticus, which depends on bacterial membrane potential. We suggest that exogenous exposure to crucial metabolites could be an effective strategy for treating and/or managing infections with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ming Jiang
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266071China
| | - Lifen Yang
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Zhuang‐gui Chen
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Shi‐shi Lai
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Jun Zheng
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Bo Peng
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266071China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Zhuhai519000China
| |
Collapse
|