1
|
Cao Y, Zhang J, Wang D, Zheng Y, Cheng J, Geng M, Li K, Yang J, Wei X. Granzyme B secreted by T cells is involved in anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109865. [PMID: 39214265 DOI: 10.1016/j.fsi.2024.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Secreted by natural killer cells and cytotoxic T lymphocytes, Granzyme B is involved in regulating the adaptive immune response in vertebrates and plays a pivotal role in resisting virus invasion and removing pathogens. Although it had been extensively studied in mammals, the involvement of Granzyme B in adaptive immune response of early vertebrates remained elusive. In this study, we investigated the Granzyme B in Oreochromis niloticus (OnGrB), found that its function domain was conserved. Additionally, OnGrB was widely expressed in various tissues and could respond to T-cell activation in vitro at the transcriptional level. Furthermore, we prepared the recombinant OnGrB (rOnGrB) as an immunogen to develop a mouse anti-OnGrB monoclonal antibody (mAb). Using this anti-OnGrB mAb as a tool, we explored the expression of OnGrB in the adaptive immune response of tilapia. Our findings revealed that T cell was a significant source of OnGrB production, the expression of OnGrB at the protein level and the proportion of OnGrB + T cells increased after both T cell activation in vitro and infection with Edwardsiella piscicida in vivo. More importantly, our findings also preliminarily illuminated that p65 could regulate the transcriptional activity of OnGrB. These results indicated that OnGrB was involved in the adaptive immunity of tilapia and played a critical role in T cell function in teleost. Our study provided theoretical support and new perspectives for understanding adaptive immunity in teleost.
Collapse
Affiliation(s)
- Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Mu P, Teng Y, Wu H, Li X, Huo J, Ao J, Chen X. Large yellow croaker (Lrimichthys crocea) IL-2 modulates humoral immunity via the conserved JAK-STAT5 signal pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108519. [PMID: 36608811 DOI: 10.1016/j.fsi.2023.108519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The terminal differentiation of B cells into plasma cells is central to the generation of protective, long-lived humoral immune responses. In mammals, interleukin-2 (IL-2) has been shown to play a role in B cell proliferation and differentiation. However, it remains unclear whether fish IL-2 is involved in B cell proliferation and differentiation. To this end, we investigated the regulatory role of IL-2 in B cell proliferation and differentiation in large yellow croaker (Larimichthys crocea). We found that L. crocea IL-2 (LcIL-2) significantly increased IgM+ B cells proliferation both in vivo and in vitro and facilitated IgM+ B cells differentiation into plasma cells. Furthermore, LcIL-2 increased the production of specific antibodies after immunization with the Vibrio alginolyticus subunit vaccine, recombinant dihydrolipoamide dehydrogenase (rDLD); simultaneous administration of LcIL-2 and rDLD prior to challenge with Vibrio parahaemolyticus or V. alginolyticus significantly increased relative percent survival. Mechanistically, LcIL-2 promoted B cell proliferation and regulated B cell differentiation by triggering the JAK-STAT5 signaling pathway. Collectively, our results demonstrated that LcIL-2 improved B cell proliferation and specific antibody production via the conserved JAK-STAT5 signaling pathway in large yellow croaker, providing valuable insights into the mechanisms underlying the IL-2-mediated regulation of the humoral immune response in fish.
Collapse
Affiliation(s)
- Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan Teng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyu Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinran Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieying Huo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
3
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Lv M, Wang F, Yao Y, Liu X, Wang X. In vitro assessment of the capacity of grass carp Il-2 dimeric receptors to mediate Stat5 phosphorylation. Gene 2022; 823:146321. [PMID: 35218892 DOI: 10.1016/j.gene.2022.146321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Mengyuan Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Fanghua Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yuyan Yao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xuelian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Lv M, Qiu X, Wang J, Wang Y, Liu Q, Zhou H, Zhang A, Wang X. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils. FISH & SHELLFISH IMMUNOLOGY 2022; 124:472-479. [PMID: 35483596 DOI: 10.1016/j.fsi.2022.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Granzyme (Gzm) B and perforin, both as cytotoxic proteins, can collaborate to induce the death of target cells as well as the microbes. They were originally discovered in cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and confer the cytotoxic activities of these cells. In the present study, the coding sequences of a granzyme b-like (gcgzmbl) and a perforin-like (gcprfl) genes were cloned from grass carp (Ctenopharyngodon idellus) and their specific antibodies were subsequently prepared and validated. The mRNA and protein expression of these two cytotoxic proteins in grass carp peripheral blood neutrophils was demonstrated by quantitative PCR (qPCR) and immunofluorescence staining, respectively. In the same cell model, expression of gcGzmbl and gcPrfl was stimulated by grass carp interleukin (Il)-2 in a dose- and time-dependent manners and Erk, NF-κB and Stat5 pathways were found to be involved in the regulation of Il-2 on the genes' expression. Additionally, glycolysis was proved to play a role in the stimulation of Il-2 on gcGzmbl and gcPrfl expression in peripheral blood neutrophils. As combating the invading microorganisms is one of the main functions of neutrophils, the roles of gcGzmbl and gcPrfl in the anti-bacterial activities of grass carp peripheral blood neutrophils were explored. Results showed that immunoneutralization of gcGzmbl or gcPrfl significantly attenuated the antimicrobial abilities of the neutrophils enhanced by Il-2. These findings shed a light on the expression, regulation and functions of granzyme B- and perforin-like proteins in fish peripheral blood neutrophils and enrich the understanding of Il-2 function in fish innate immunity.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jiankang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qingqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
6
|
Wang J, Wang W, Xu J, Jia Z, Liu Q, Zhu X, Xia C, Zou J. Structural insights into the co-evolution of IL-2 and its private receptor in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103895. [PMID: 33065202 DOI: 10.1016/j.dci.2020.103895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL) -2, a member of the four α-helical cytokine family, has broad regulatory roles in mediating vertebrate immune response. In mammals, IL-2 and IL-15 share a common evolutionary origin and possess overlapping but distinct functions. IL-2 and IL-15 bind to distinct private receptors for signaling. However, fish appear to possess a single IL-15Rα like gene whilst lack additional gene(s) coding for IL-2Rα. Whether the IL-2 and IL-15 interact with the same receptor in fish and how their functions and receptors have evolved are not fully understood. In this study, homologues of IL-2 and IL-2/15Rα were sequenced from a teleost species, grass carp (Ctenopharyngodon idella), and the crystal structure of IL-2 was determined. The grass carp IL-2 (termed CiIL-2) displayed a classical cytokine structure consisting of four helical bundles which shares significant similarity with human IL-15. The key amino acids involved in the interface interaction of IL-2/15 and their receptors are well conserved. The CiIL-2 has been shown to bind the IL-2/15Rα like homologue with an affinity of 2.45 nM, supporting the notion that fish IL-2 and IL-15 may share a single common private receptor for exerting functions. Syntenic analysis suggests that the IL-2Rα of tetrapods has evolved from an IL-15Rα like homologue, in which a second sushi domain (D2) in the extracellular region has been duplicated to facilitate the specific interaction with IL-2. The CiIL-2 was predominantly expressed in lymphocyte-rich tissues such as the spleen, kidney and thymus, and could be induced by PHA and IL-21. In vivo challenge with grass carp reovirus and Flavobacterium columnare also resulted in upregulation of CiIL-2 expression. The recombinant CiIL-2 was shown to activate expression of STAT5b, IL-1β, IL-22 and IFN-γ, and to promote the proliferation of the primary cell cultures from head kidney leucocytes. Our results shed lights into the co-evolution of IL-2 and its private receptor, and the functional divergence of IL-2 and IL-15 during evolution.
Collapse
Affiliation(s)
- Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|