1
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
2
|
Rice MC, Janik AJ, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. PLoS Biol 2024; 22:e3002606. [PMID: 38814944 PMCID: PMC11139271 DOI: 10.1371/journal.pbio.3002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew J. Janik
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Rice MC, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555169. [PMID: 37693489 PMCID: PMC10491165 DOI: 10.1101/2023.08.28.555169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current Address: Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
4
|
Jiang T, Liang YS, Gu Y, Yao FC, Liu YF, Zhang KX, Song FB, Sun JL, Luo J. Different reoxygenation rates induce different metabolic, apoptotic and immune responses in Golden Pompano (Trachinotus blochii) after hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108640. [PMID: 36871632 DOI: 10.1016/j.fsi.2023.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.
Collapse
Affiliation(s)
- Tian Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Ye Song Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yue Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fu Cheng Yao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Yi Fan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Kai Xi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Fei Biao Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jun Long Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Huang W, Ji N, Zhao X, Guo J, Feng J, Chen K, Wu Y, Wang J, Zou J. RNA-seq analysis of a zebrafish caudal fin cell line in response to infection with spring viraemia of carp virus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
IRF2 Cooperates with Phosphoprotein of Spring Viremia of Carp Virus to Suppress Antiviral Response in Zebrafish. J Virol 2022; 96:e0131422. [PMID: 36314827 PMCID: PMC9683000 DOI: 10.1128/jvi.01314-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN regulatory factor (IRF) 2 belongs to the IRF1 subfamily, and its functions are not yet fully understood. In this study, we showed that IRF2a was a negative regulator of the interferon (IFN) response induced by spring viremia of carp virus (SVCV). Irf2a-/- knockout zebrafish were less susceptible to SVCV than wild-type fish. Transcriptomic analysis reveals that differentially expressed genes (DEGs) in the irf2a-/- and irf2a+/+ cells derived caudal fins were mainly involved in cytokine-cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-beta (TGF-beta) signaling pathway. Interestingly, the basal expression levels of interferon stimulating genes (ISGs), including pkz, mx, apol, and stat1 were higher in the irf2a-/- cells than irf2a+/+ cells, suggesting that they may contribute to the increased viral resistance of the irf2a-/- cells. Overexpression of IRF2a inhibited the activation of ifnφ1 and ifnφ3 induced by SVCV and poly(I:C) in the epithelioma papulosum cyprini (EPC) cells. Further, it was found that SVCV phosphoprotein (SVCV-P) could interact with IRF2a to promote IRF2a nuclear translocation and protein stability via suppressing K48-linked ubiquitination of IRF2a. Both IRF2a and SVCV-P not only destabilized STAT1a but reduced its translocation into the nucleus. Our work demonstrates that IRF2a cooperates with SVCV-P to suppress host antiviral response against viral infection in zebrafish. IMPORTANCE Interferon regulatory factors (IRFs) are central in the regulation of interferon-mediated antiviral immunity. Here, we reported that IRF2a suppressed interferon response and promoted virus replication in zebrafish. The suppressive effects were enhanced by the phosphoprotein of the spring viremia of carp virus (SVCV) via inhibition of K48-linked ubiquitination of IRF2a. IRF2a and SVCV phosphoprotein cooperated to degrade STAT1 and block its nuclear translocation. Our work demonstrated that IRFs and STATs were targeted by the virus through posttranslational modifications to repress interferon-mediated antiviral response in lower vertebrates.
Collapse
|
7
|
Sugasti-Salazar M, Campos D, Valdés-Torres P, Galán-Jurado PE, González-Santamaría J. Targeting Host PIM Protein Kinases Reduces Mayaro Virus Replication. Viruses 2022; 14:v14020422. [PMID: 35216015 PMCID: PMC8878588 DOI: 10.3390/v14020422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Mayaro virus (MAYV) manipulates cell machinery to successfully replicate. Thus, identifying host proteins implicated in MAYV replication represents an opportunity to discover potential antiviral targets. PIM kinases are enzymes that regulate essential cell functions and also appear to be critical factors in the replication of certain viruses. In this study we explored the consequences of PIM kinase inhibition in the replication of MAYV and other arboviruses. Cytopathic effects or viral titers in samples from MAYV-, Chikungunya-, Una- or Zika-infected cells treated with PIM kinase inhibitors were evaluated using an inverted microscope or plaque-forming assays. The expression of viral proteins E1 and nsP1 in MAYV-infected cells was assessed using an immunofluorescence confocal microscope or Western blot. Our results revealed that PIM kinase inhibition partially prevented MAYV-induced cell damage and also promoted a decrease in viral titers for MAYV, UNAV and ZIKV. The inhibitory effect of PIM kinase blocking was observed for each of the MAYV strains tested and also occurred as late as 8 h post infection (hpi). Finally, PIM kinase inhibition suppressed the expression of MAYV E1 and nsP1 proteins. Taken together, these findings suggest that PIM kinases could represent an antiviral target for MAYV and other arboviruses.
Collapse
Affiliation(s)
- Madelaine Sugasti-Salazar
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
- Programa de Maestría en Microbiología Ambiental, Universidad de Panama, Panama City 3366, Panama
| | - Dalkiria Campos
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - Patricia Valdés-Torres
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - Paola Elaine Galán-Jurado
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City 0816-02593, Panama; (M.S.-S.); (D.C.); (P.V.-T.); (P.E.G.-J.)
- Correspondence: ; Tel.: +507-527-4814
| |
Collapse
|
8
|
Sullivan C, Soos BL, Millard PJ, Kim CH, King BL. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front Immunol 2021; 12:636623. [PMID: 34025644 PMCID: PMC8138431 DOI: 10.3389/fimmu.2021.636623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied in vivo using animal models. In this review, we describe how the zebrafish (Danio rerio) has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with in vivo imaging of transparent embryos and larvae. The innate immune system has an essential role in the initial inflammatory response to viral infection. Focused studies of the innate immune response to viral infection are possible using the zebrafish model as there is a 4-6 week timeframe during development where they have a functional innate immune system dominated by neutrophils and macrophages. During this timeframe, zebrafish lack a functional adaptive immune system, so it is possible to study the innate immune response in isolation. Sequencing of the zebrafish genome has revealed significant genetic conservation with the human genome, and multiple studies have revealed both functional conservation of genes, including those critical to host cell infection and host cell inflammatory response. In addition to studying several fish viruses, zebrafish infection models have been developed for several human viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection models, coupled with the inherent strengths of the zebrafish model, particularly as it relates to our understanding of macrophage and neutrophil biology, offers opportunities for far more intensive studies aimed at understanding conserved host responses to viral infection. In this context, we review aspects relating to the evolution of innate immunity, including the evolution of viral pattern recognition receptors, interferons and interferon receptors, and non-coding RNAs.
Collapse
Affiliation(s)
- Con Sullivan
- College of Arts and Sciences, University of Maine at Augusta, Bangor, ME, United States
| | - Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Paul J. Millard
- Department of Environmental and Sustainable Engineering, University at Albany, Albany, NY, United States
| | - Carol H. Kim
- Department of Biomedical Sciences, University at Albany, Albany, NY, United States
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
9
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
10
|
Zebrafish pten Genes Play Relevant but Distinct Roles in Antiviral Immunity. Vaccines (Basel) 2020; 8:vaccines8020199. [PMID: 32357549 PMCID: PMC7349019 DOI: 10.3390/vaccines8020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
The PTEN (phosphatase and TENsin homolog on chromosome 10) gene encodes a bifunctional phosphatase that acts as a tumor suppressor. However, PTEN has been implicated in different immune processes, including autophagy, inflammation, regulation of natural killer (NK) cell cytolytic activity and type I interferon responses. Unlike mammals, zebrafish possess two pten genes (ptena and ptenb). This study explores the involvement of both zebrafish pten genes in antiviral defense. Although ptena−/− and ptenb−/− larvae were more susceptible to Spring viremia of carp virus (SVCV), the viral replication rate was lower in the mutant larvae than in the wild-type larvae. We observed that both mutant lines showed alterations in the transcription of numerous genes, including those related to the type I interferon (IFN) system, cytolytic activity, autophagy and inflammation, and some of these genes were regulated in opposite ways depending on which pten gene was mutated. Even though the lower replication rate of SVCV could be associated with impaired autophagy in the mutant lines, the higher mortality observed in the ptena−/− and ptenb−/− larvae does not seem to be associated with an uncontrolled inflammatory response.
Collapse
|