1
|
Huang S, Kang Y, Zheng R, Yang L, Gao J, Tang W, Jiang J, He J, Xie J. Two cytokine receptor family B (CRFB) members in orange-spotted grouper Epinephelus coioides, EcCRFB3 and EcCRFB4, negatively regulate interferon immune responses to assist nervous necrosis virus replication. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109718. [PMID: 38909635 DOI: 10.1016/j.fsi.2024.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Liu G, Xin S, Geng S, Zheng W, Xu T, Sun Y. Identification of a novel fusion gene NLRC3-NLRP12 in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108697. [PMID: 36965609 DOI: 10.1016/j.fsi.2023.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Fusion gene is a new gene formed by the fusion of all or part of the sequences of two genes, it is caused by chromosome translocation, middle deletion or chromosome inversion. Numerous studies in the past have continuously shown that gene fusions are tightly associated with the occurrence and development of various diseases, especially cancer. Many fusion genes have been identified in humans. However, few fusion genes have been identified in fish. In this study, a novel NLRC3-NLRP12 fusion gene was identified in the Miichthys miiuy (miiuy croaker) by quantitative real-time PCR (qRT-PCR), PCR, and Sanger sequencing. This fusion gene is fused by two genes related to NLRs (nucleotide binding domain and oligomerization domain like receptors). We found that the expression of the NLRC3-NLRP12 fusion gene was significantly upregulated after infection with Vibrio anguillarum (V. anguillarum) or stimulation with lipopolysaccharide (LPS). In addition, the NLRC3-NLRP12 fusion gene was strongly induced by V. anguillarum infection, peaking within the kidney and liver at 12 h post infection. Further functional experiments showed that overexpression of NLRC3-NLRP12 significantly inhibited nuclear factor kappa-B (NF-κB) activation. This study suggests that the newly discovered NLRC3-NLRP12 fusion genes may play an important role in innate immunity in miiuy croaker.
Collapse
Affiliation(s)
- Guiliang Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
3
|
Wang W, Luo Q, Zhao Y, Geng S, Xu T, Sun Y. Genomic organization, evolution and functional characterization of embryonic lethal abnormal vision like protein 1 (ELAVL1) in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104659. [PMID: 36764421 DOI: 10.1016/j.dci.2023.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Embryonic lethal vision-like protein 1 (ELAVL1), an AU-rich elements (AREs) binding protein involved in the regulation of inflammatory transcript stability, which has not been reported in fish. In this study, we identified the ELAVL1 gene in Miichthys miiuy (mmiELAVL1), and then analyzed its structure and evolution, furthermore described its expression pattern in miiuy croaker. The results showed that mmiELAVL1 and other vertebrate ELAVL1 genes all have three highly conserved RNA recognition motif (RRM) protein domains, and the structure and protein structure are evolutionarily conserved, indicating that their functions may also conservative. In healthy miiuy croaker, mmiELAVL1 was commonly expressed in the tested tissues, and mmiELAVL1 is mainly localized in the nucleus of kidney cells. In addition, mmiELAVL1 responds to poly(I:C) and SCRV stimulation and promotes antiviral genes, indicating its active role in immune process. In summary, this study will facilitate future studies on the role and underlying mechanisms of ELAVL1 in fish immune responses.
Collapse
Affiliation(s)
- Wansu Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
4
|
Luo Q, Lv X, Yang L, Zheng W, Xu T, Sun Y. Long non-coding RNA LTCONS8875 regulates innate immunity by up-regulating IRAK4 in Miichthys miiuy (miiuy croaker). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104653. [PMID: 36736935 DOI: 10.1016/j.dci.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In recent years, many studies have shown that long non-coding RNAs (lncRNAs) can regulate many biochemical processes, such as cell growth, proliferation, and immune response, which have attracted great attention. There are relatively many studies on lncRNA in mammals, while the research on lncRNA in lower vertebrates has just begun. In this study, we found a lncRNA, lncRNA LTCONS8875, related to innate immune response in Miichthys miiuy (miiuy croaker). Our results showed that lncRNA LTCONS8875 can up-regulate the expression of IRAK4 at the mRNA and protein levels, and significantly increase the production of inflammatory factors under LPS stimulation. Our research also confirmed that lncRNA LTCONS8875 plays an active role in regulating inflammation, cell proliferation, and cell viability. In summary, this research results showed that lncRNA LTCONS8875 can as an active regulatory role of innate immunity in miiuy croaker by up-regulating the expression of IRAK4, providing some insights for understanding the network mechanism of non-coding regulation of fish immunity.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
5
|
Xie Y, Gao S, Cao Y, Ji Y, Zhang Q, Wei Y, Qi Z. Molecular characterization and functional analysis of DIGIRR from golden pompano (Trachinotus ovatus). Front Immunol 2022; 13:974310. [PMID: 36091048 PMCID: PMC9448908 DOI: 10.3389/fimmu.2022.974310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian single immunoglobulin (Ig) interleukin-1 receptor related molecule (SIGIRR), an important member of the Toll/interleukin-1 receptor (TIR) family, plays important balancing roles in the inflammatory responses. In the present study, the double Ig interleukin-1 receptor related molecule (DIGIRR), the homologous of SIGIRR, was characterized in golden pompano (Trachinotus ovatus) (termed as trDIGIRR). The full-length cDNA of trDIGIRR was 2,167 bp with an open reading frame (ORF) of 1,572 bp encoding 523 amino acids. The trDIGIRR contained several conserved domains including a signal peptide, two Ig domains, a transmembrane domain and a TIR domain, and shared high sequence identities with its teleost counterparts. Realtime qPCR analysis revealed that the trDIGIRR was distributed in all tissues examined, with high expressions in intestine, liver and head kidney. The expressions of trDIGIRR were induced by Vibrio alginolyticus, lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly I:C) challenge. Further analysis revealed that trDIGIRR was mainly located in the cytoplasm. In addition, the co-immunoprecipitation (co-IP) assay identified that trDIGIRR could interact with myeloid differentiation factor 88 (MyD88), but not interact with TIR domain containing adaptor protein inducing interferon-β (TRIF). Our results provide basis for studying the immune role of fish DIGIRR.
Collapse
Affiliation(s)
- Yushuai Xie
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Shuangshuang Gao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yiwen Cao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Yuexin Ji
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Zhitao Qi, ; Youchuan Wei,
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Zhitao Qi, ; Youchuan Wei,
| |
Collapse
|