1
|
Song Q, Li Q, Yang Y, Gao H, Han F. Antimicrobial Functions of Galectins from Fish, Mollusks, and Crustaceans: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39471068 DOI: 10.1021/acs.jafc.4c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Galectins are a member of the β-galactoside binding protein family, which play a pivotal role in the immune defense of vertebrates as a pattern recognition receptor and occupy an important position in the innate immune system of invertebrates. The study of galectins in aquatic organisms has only recently emerged. Galectins in aquatic animals exhibit agglutination activity toward bacteria, inhibit bacterial growth, and enhance phagocytosis of immune cells. Additionally, some galectins contribute to the antiviral immune defenses of aquatic animals. This review aims to review recent advancements in the antimicrobial mechanisms, molecular structures, and evolution of galectins from fish, mollusks, and crustaceans. The antimicrobial galectins, as crucial components in the innate immune defense, pave new avenues for developing innovative disease control strategies in aquaculture.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yao Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
2
|
Xu H, Long J, Qi X, Li P, Yan C, Wang L, Jin Y, Liu H. Galectin-9 activates host immune response and improve immunoprotection of Onychostoma macrolepis against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109929. [PMID: 39341377 DOI: 10.1016/j.fsi.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Galectin-9 (Gal-9) belongs to a family of the glycan-binding proteins (GBPs) and is known to restrict bacterial activity via interacting with pathogen associated molecular pattern (PAMPs). However, the underlying immune mechanism of endogenous Gal-9 on fish against bacterial infection is still unclear. In this study, effects of Gal-9 from Onychostoma macrolepis (OmGal-9) on expression of immune-related genes were measured by HEK293T. The immune response of O. macrolepis with OmGal-9 overexpression to Aeromonas hydrophila (A. hydrophila) infection (1.65 × 108 CFU/mL) was evaluated by tissue bacterial load, fish survival rate and transcriptome analysis. The results showed that OmGal-9 displayed a punctate distribution in the nucleus and cytoplasm of HEK293T cells. Compared to cells transfected with the empty vector (EV group), recombinant plasmid pEGFP-Gal9 treatment (Gal9 group) significantly down-regulated the expression of immune-related genes TNFα, STAT3, MyD88, LCK, and p52 of HEK293T cells stimulated with LPS at 24 h, while up-regulated IκBα and caspase-1 (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD), the total antioxidant capacity (T-AOC), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) of O. macrolepis were significantly increased on 7 days in Gal9 group compared to EV group (P < 0.05). The bacterial load of liver, spleen, and kidney of O. macrolepis infected with A. hydrophila in Gal9 group at 24 h was significantly lower than that in EV group (P < 0.05), and the survival rate had increased from 15 % to 35 %. A comparative transcriptome analysis between the Gal9 and EV group identified 305 differentially expressed genes (DEGs). The analysis showed that OmGal-9 might play an important regulatory role in glycolysis/gluconeogenesis, fatty acid degradation, and ascorbate and aldarate metabolism. Moreover, the immune-related DEGs were predominantly enriched in eleven pathways, with the most important three of them being linked to innate immunity: NOD-like, C-type lectin and Toll-like receptor signaling pathway. Taking together, OmGal-9 can enhance the resistance of fish to bacterial diseases by improving immune system function and activating immune-related pathways.
Collapse
Affiliation(s)
- Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ping Li
- Power China Northwest Engineering Corporation Limited, Xi'an, 710065, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Xu Z, Yu S, Xu C, Zhao J, Zhu J, Liu D, Peng M, Liu Y, Zhu Q. Characterization of Tfgal-9: A galectin in innate immune system of Trachidermus fasciatus - Insights into its sequence analysis, expression patterns, and in vitro bioactivities. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109915. [PMID: 39306213 DOI: 10.1016/j.fsi.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
An in-depth understanding of the immune system of endangered species is crucial for successful conservation efforts. Galectins, as members of the lectin family, play a crucial role in the fish innate immune system. Galectin-9 (Tfgal-9) was cloned from endangered species Trachidermus fasciatus, revealing a cDNA sequence of 1453 bp with an open reading frame of 900 bp encoding a protein of 299 amino acids. Tfgal-9 protein features two repeated carbohydrate-binding domains, each characterized by two conserved galactose-binding sites (H-NPR and WG-EER), and it possesses neither a signal peptide nor a transmembrane domain. The qRT-PCR analysis revealed that Tfgal-9 was widely expressed across all examined tissues, with the highest expression in the intestine, followed by the blood, heart and brain. Expression was notably up-regulated in the blood, skin, liver, stomach, and heart when challenged with LPS. Following induction by the heavy metal solution containing Cu, Pb, Cd, and Hg, the expression Tfgal-9 was dramatically induced to 32 times higher than that of the control group in the brain. The recombinant Tfgal-9 protein exhibits calcium-independent binding and agglutination of selected bacteria and yeast. Antimicrobial activity of recombinant Tfgal-9 protein against Gram positive bacteria Staphylococcus aureus was confirmed using the cylinder-plate method. In vitro antioxidant experiments showed that radical scavenging activity of DPPH was 50.38 % when Tfgal-9 concentration reached 200 μg/mL. These results indicate that Tfgal-9 may play important roles in the immune response against microbial infections and the maintaining of redox homeostasis.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Chenjing Xu
- Department of Sociology, Zhejiang University, Hangzhou, 310058, China; Market Supervision Bureau of Nanxun District, Huzhou, 313009, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China; Mellon College of Science, Carnegie Mellon University, Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Min Peng
- Department of Biology, McGill University, 845 Rue Sherbrooke O, Montréal, QC, H3A 0G4, Canada.
| | - Yingying Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Qian Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
4
|
Zhu YF, Hu YF, Li CH, Nie L, Chen J. Molecular characterization and functional study of a galectin-9 from a teleost fish, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109308. [PMID: 38122956 DOI: 10.1016/j.fsi.2023.109308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Galectin-9, a tandem-repeat galectin, plays an important role in the regulation of innate immune response against various microbial infections. Here, galectin-9 from mudskipper (Boleophthalmus pectinirostris) was identified and named as BpGal-9. Putative BpGal-9 contains two conserved carbohydrate recognition domains (CRDs), one CRD within N-terminal (N-CRD) and the other one within C-terminal (C-CRD). Multi-alignment analysis indicated that BpGal-9 shared the highest amino acid sequence identity of 64.3 % with that of Southern platyfish (Xiphophorus maculatus). Phylogenetic analysis showed that BpGal-9 grouped tightly with other teleosts galectin-9 and was most closely related to that of Southern platyfish. BpGal-9 transcripts were more abundant in the intestine, and its expression upregulated significantly in the intestine, kidney, spleen, gills, and skin after Edwardsiella tarda infection. Meanwhile, BpGal-9 expression significantly increased in hemocytes and serum of mudskipper infected by E. tarda. The recombinant BpGal-9 (rBpGal-9) and rBpGal-9C-CRD could agglutinate all tested bacteria, whereas rBpGal-9N-CRD could only agglutinate three kinds of bacteria. When targeting the same bacteria, rBpGal-9 showed stronger agglutinating activities than rBpGal-9C-CRD or rBpGal-9N-CRD. In addition, the induction effect of three recombinant proteins on the mRNA expression of anti-inflammatory cytokines (BpIL-10 and BpTGF-β) was better than that on the pro-inflammatory cytokines (BpIL-1β and BpTNF-α). Our result suggested that the N-CRD and C-CRD of galectin-9 contribute differently to its multiple functions in innate immunity in teleosts.
Collapse
Affiliation(s)
- Yong-Fei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yi-Fan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
5
|
Huang M, Lou X, Tao T, Li H, Guo Y, Yuan Z, Yang S, Fei H. Largemouth bass galectin, MsGal-9: Mediating various functions as a pattern recognition receptor and a potential damage-associated molecular pattern. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109348. [PMID: 38163493 DOI: 10.1016/j.fsi.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Galectins are lectins that bind to β-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaocong Lou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Tao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haoyuan Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yang Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Yang Q, Sun J, Wu W, Xing Z, Yan X, Lv X, Wang L, Song L. A galectin-9 involved in the microbial recognition and haemocyte autophagy in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105063. [PMID: 37730190 DOI: 10.1016/j.dci.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Galectin-9 is a tandem-repeat type member of galectin family participating in various immune responses, such as cell agglutination, phagocytosis, and autophagy. In the present study, a tandem repeat galectin-9 (defined as CgGal-9) was identified from Pacific oyster Crassostrea gigas, which consisted of two conserved carbohydrate recognition domains (CRDs) joined by a linker peptide. CgGal-9 was closely clustered with CaGal-9 from C. angulata, and they were assigned into the branch of invertebrate galectin-9s in the phylogenetic tree. The mRNA transcripts of CgGal-9 were detected in all the tested tissues, with the highest expression level in haemocytes. The mRNA expressions of CgGal-9 in haemocytes increased significantly after lipopolysaccharide (LPS) and Vibrio splendidus stimulation. The recombinant CgGal-9 was able to bind all the examined pathogen-associated molecular patterns (LPS, peptidoglycan, and mannose) and microbes (V. splendidus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Pichia pastoris), and agglutinated most of them in the presence of Ca2+. In CgGal-9-RNAi oysters, the mRNA expressions of autophagy related genes (CgBeclin1, CgATG5, CgP62 and CgLC3) in haemocytes decreased significantly while that of CgmTOR increased significantly at 3 h after V. splendidus stimulation. The autophagy level and mRNA expressions of autophagy related genes decreased in haemocytes after CgGal-9 was blocked by the corresponding antibody. These results revealed that CgGal-9 was able to bind different microbes and might be involved in haemocyte autophagy in the immune response of oyster.
Collapse
Affiliation(s)
- Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Luo S, Wu B, Li Q, Li W, Wang Z, Song Q, Han F. Identification of Galectin 9 and its antibacterial function in yellow drum (Nibea albiflora). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109044. [PMID: 37657557 DOI: 10.1016/j.fsi.2023.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Galectins are a family of evolutionarily conserved lectins that contain carbohydrate recognition domains (CRDs) specifically recognizing β-galactoside. Galectin-9 plays a crucial role in various biological processes during pathogenic infections. In a previous study, galectin-9 was identified as a candidate gene for resistance to Vibrio harveyi disease in yellow drum using a genome-wide association study (GWAS) analysis. In this study, a galectin-9 gene was identified from Nibea albiflora and named YdGal-9. The mRNA transcripts of YdGal-9 were distributed in all the detected tissues and the highest level was found in the kidney. The subcellular localization of YdGal-9-EGFP proteins was observed in both nucleus and cytoplasm in the kidney cells of N. albiflora. The expression of YdGal-9 in the brain increased significantly after infection with Vibrio harveyi. The red blood cells from rabbits, Larimichthys crocea, and N. albiflora were agglutinated by the purified recombinant YdGal-9 proteins. The results of the agglutination activity of deletion mutants of YdGal-9 proved that the conserved sugar binding motifs (H-NPR and WG-EE-) were critical for YdGal-9's agglutination activity. In addition, YdGal-9 killed some gram-negative bacteria by inducing cell wall destruction including Pseudomonas plecoglossicida, Aeromonas hydrophila, Escherichia coli, V. parahemolyticus, V. harveyi, and V. alginolyticus. Taken together, these results suggested that the YdGal-9 protein of N. albiflora played a vital role in fighting bacterial infections.
Collapse
Affiliation(s)
- Shuai Luo
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, Fujian, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qiaoying Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, Fujian, China; Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, Fujian, China.
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
8
|
Wang X, Liu L, Zhang R, Li H, Zhu H. Involvement of galectin-9 from koi carp (Cyprinus carpio) in the immune response against Aeromonas veronii infection. FISH & SHELLFISH IMMUNOLOGY 2022; 129:64-73. [PMID: 35940538 DOI: 10.1016/j.fsi.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Galectins are β-galactoside sugar binding proteins which function as important pattern recognition receptors (PRRs) in innate immunity. Here, we identified a galectin-9 gene from koi carp (Cyprinus carpio), named kGal-9. The ORF of kGal-9 is 963 bp in length, which encodes a polypeptide of 320 amino acids without either signal peptide. The predicted molecular weight is 36.25 kDa, and the isoelectric point is 8.3. Multiple sequence alignment showed that the putative kGal-9 contains two carbohydrate recognition domains (CRD), which are conserved in Galectin-9s. The phylogenetic tree showed that kGal-9 clustered to Galectin-9s from other teleosts, and shared the highest identity of 87.5% with Qihe crucian (Carassius auratus). kGal-9 mRNA was abundant in head kidney, gills, and gut, but low in liver and muscle. Further, the expression level of kGal-9 in the head kidney and liver increased significantly after Aeromonas veronii (abbreviated A.v) infection. Unexpectedly, kGal-9 showed a remarkable downregulation in the spleen at various time points post A.v infection. Intramuscular injection of pckGal-9 not merely reduced the bacterial load of spleen tissue, but also improved the survival rate of koi carp post A.v challenge. Besides, administration of pckGal-9 stimulated the expression of several immuno-related genes including proinflammatory cytokines (IL-1β, IL-6), anti-inflammatory cytokine (IL-10), complement components (C4, C9), with fluctuation in spleen and head kidney. Taken together, the obtained results suggest that kGal-9 occupies an important role in innate immunity and defense against bacterial infection in koi carp.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Key Laboratory of Fishery Biotechnology&Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, PR China
| | - Lili Liu
- Beijing Key Laboratory of Fishery Biotechnology&Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, PR China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology&Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, PR China
| | - Huijuan Li
- Beijing Key Laboratory of Fishery Biotechnology&Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, PR China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology&Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, PR China.
| |
Collapse
|
9
|
Ganeshalingam S, Sandamalika WMG, Lim C, Yang H, Liyanage DS, Nadarajapillai K, Jeong T, Lee J. Molecular characterization and expression profiling of tandem-repeat galectin-8 from red-spotted grouper (Epinephelus akaara): Potential antibacterial, antiviral, and wound healing activities. FISH & SHELLFISH IMMUNOLOGY 2022; 121:86-98. [PMID: 34990805 DOI: 10.1016/j.fsi.2021.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Galectin-8 is a typical β-galactoside binding lectin, which primarily functions as a pattern recognition receptor and/or danger receptor that is engaged in pathogen recognition by the host innate immune system. Although several fish galectins have been identified, the role of galectin-8 in teleost immunity is still not fully understood. In this study, molecular, transcriptional, and immune-related functions of galectin-8 (EaGal8) from red-spotted grouper (Epinephelus akaara) were analyzed. The open reading frame of EaGal8 comprised 960 bp encoding 319 amino acids of a ∼35 kDa protein, composed of the N- and C-terminal carbohydrate recognition domains joined by a short hinge peptide. Phylogenetic analysis revealed that EaGal8 was closely related to the Epinephelus lanceolatus galectin-8-like protein. Although EaGal8 showed ubiquitous tissue expression, the highest expression level was observed in the blood. Immunostimulants, including lipopolysaccharide, poly(I:C), and nervous necrosis virus, significantly upregulated the EaGal8 transcription level in a time-dependent manner (p < 0.05). Furthermore, recombinant EaGal8 (rEaGal8) showed a binding affinity toward seven different carbohydrates in a concentration-dependent manner. In addition, rEaGal8 caused strong agglutination of fish red blood cells and several gram-positive and gram-negative bacteria, including Streptococcus iniae, Streptococcus parauberis, Lactococcus garvieae, Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus, Vibrio parahaemolyticus, and Pseudomonas aeruginosa. For the first time in teleosts, we report the wound healing ability of galectin-8 in this study. At low concentrations, rEaGal8 showed potential wound healing responses in FHM cells, in vitro. Thus, this study reinforces the role of EaGal8 in innate immune responses against bacterial and viral infections and wound healing in red-spotted grouper.
Collapse
Affiliation(s)
- Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
10
|
Wang L, Wang Q, Wang L, Wu S, Yu Y, Zhang Y, Gao P, Kong X, Ma J. The N- and C-terminal carbohydrate recognition domains of galectin-9 from Carassius auratus contribute differently to its immunity functions to Aeromonas hydrophila and Staphylococcus aureus. JOURNAL OF FISH DISEASES 2021; 44:1865-1873. [PMID: 34287946 DOI: 10.1111/jfd.13497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Galectin-9, an important pathogen recognition receptor (PRR), could recognize and bind pathogen-associated molecular patterns (PAMPs) on the surface of invading microorganisms, initiating the innate immune responses. A galectin-9 was identified from Qihe crucian carp Carassius auratus and designated as CaGal-9. The predicted CaGal-9 protein contained two non-identical carbohydrate recognition domains (CRDs), namely, N-CRD and C-CRD. The recombinant proteins (rCaGal-9, rN-CRD and rC-CRD) were purified from Escherichia coli BL21 (DE3) and exhibited strong agglutinating activity with erythrocytes of rabbit. The haemagglutination was inhibited by D-galactose, α-lactose and N-acetyl-D-galactose. Results of microbial agglutination assay showed that three recombinant proteins agglutinated Gram-negative bacterium Aeromonas hydrophila and Gram-positive bacterium Staphylococcus aureus. With regard to the binding activity, each recombinant protein could bind to LPS, PGN and the examined microorganisms (A. hydrophila and S. aureus) with different binding affinities. The integrated analyses suggested that CaGal-9 with two CRD domains could play an important role in immune defence against pathogenic microorganisms for C. auratus.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shixiu Wu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
11
|
Yu M, Zhou S, Ding Y, Guo H, Li Y, Huang Q, Zheng X, Xiu Y. Molecular characterization and functional study of a tandem-repeat Galectin-9 from Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 112:23-30. [PMID: 33617959 DOI: 10.1016/j.fsi.2021.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Galectin-9 is a β-galactoside-binding lectin which could modulate a variety of biological functions including recognition, aggregation and clearance of pathogen. In this study, one Galectin-9 (named PoGalectin-9) was identified from Japanese flounder Paralichthys olivaceus. PoGalectin-9 belongs to the tandem-repeat type, containing one 127-amino acids CRD domain within N terminal and one 122-amino acids CRD domain within C-terminal. The open reading frame of PoGalectin-9 cDNA was 921 bp encoding 306 amino acids. Sequence similarity comparison confirmed that PoGalectin-9 shared high homology with other Galectin-9. The tissue distribution and expression profiles after bacterial infection were also investigated. PoGalectin-9 was widely distributed in all of the examined tissues of Japanese flounder but was predominantly expressed in the spleen, kidney and intestine. After Edwardsiella tarda challenge, the expression of PoGalectin-9 was up-regulated in spleen and down regulated in kidney. ELISA experiment showed that recombinant PoGalectin-9 (rPoGalectin-9) exhibit binding capacity to lipopolysaccharide (LPS) and peptidoglycan (PGN), which is significantly correlated with the concentration of rPoGalectin-9. Meanwhile, the rPoGalectin-9 protein showed strong agglutinating activities against both Gram-negative bacteria and Gram-positive bacteria. Bacterial binding experiments showed that rPoGalectin-9 could bind all examined bacteria. In conclusion, the present study indicate that PoGalectin-9 might play important roles during the immune responses of Japanese flounder against bacterial pathogens.
Collapse
Affiliation(s)
- Mingming Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuanyuan Ding
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ying Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xujia Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
12
|
Zhang T, Jiang S, Sun L. A Fish Galectin-8 Possesses Direct Bactericidal Activity. Int J Mol Sci 2020; 22:ijms22010376. [PMID: 33396490 PMCID: PMC7796122 DOI: 10.3390/ijms22010376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
Galectins are a family of animal lectins with high affinity for β-galactosides. Galectins are able to bind to bacteria, and a few mammalian galectins are known to kill the bound bacteria. In fish, no galectins with direct bactericidal effect have been reported. In the present study, we identified and characterized a tandem repeat galectin-8 from tongue sole Cynoglossus semilaevis (designated CsGal-8). CsGal-8 possesses conserved carbohydrate recognition domains (CRDs), as well as the conserved HXNPR and WGXEE motifs that are critical for carbohydrate binding. CsGal-8 was constitutively expressed in nine tissues of tongue sole and up-regulated in kidney, spleen, and blood by bacterial challenge. When expressed in HeLa cells, CsGal-8 protein was detected both in the cytoplasm and in the micro-vesicles secreted from the cells. Recombinant CsGal-8 (rCsGal-8) bound to lactose and other carbohydrates in a dose dependent manner. rCsGal-8 bound to a wide range of gram-positive and gram-negative bacteria and was co-localized with the bound bacteria in animal cells. Lactose, fructose, galactose, and trehalose effectively blocked the interactions between rCsGal-8 and different bacteria. Furthermore, rCsGal-8 exerted potent bactericidal activity against some gram-negative bacterial pathogens by directly damaging the membrane and structure of the pathogens. Taken together, these results indicate that CsGal-8 likely plays an important role in the immune defense against some bacterial pathogens by direct bacterial interaction and killing.
Collapse
Affiliation(s)
- Tengfei Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Correspondence: (S.J.); (L.S.); Tel.: +86-532-8289-1027 (S.J.); +86-532-8289-8829 (L.S.)
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Correspondence: (S.J.); (L.S.); Tel.: +86-532-8289-1027 (S.J.); +86-532-8289-8829 (L.S.)
| |
Collapse
|