1
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Yañez AJ, Barrientos CA, Isla A, Aguilar M, Flores-Martin SN, Yuivar Y, Ojeda A, Ibieta P, Hernández M, Figueroa J, Avendaño-Herrera R, Mancilla M. Discovery and Characterization of the ddx41 Gene in Atlantic Salmon: Evolutionary Implications, Structural Functions, and Innate Immune Responses to Piscirickettsia salmonis and Renibacterium salmoninarum Infections. Int J Mol Sci 2024; 25:6346. [PMID: 38928053 PMCID: PMC11204154 DOI: 10.3390/ijms25126346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.
Collapse
Affiliation(s)
- Alejandro J. Yañez
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
| | - Claudia A. Barrientos
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Adolfo Isla
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Valdivia 5090000, Chile
| | - Marcelo Aguilar
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Sandra N. Flores-Martin
- Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.B.); (A.I.); (M.A.); (S.N.F.-M.)
| | - Yassef Yuivar
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Adriana Ojeda
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| | - Pablo Ibieta
- TEKBios Ltda, Camino Pargua Km 8, Maullín 5580000, Chile;
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz 4133515, Chile;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rubén Avendaño-Herrera
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; (J.F.); (R.A.-H.)
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Marcos Mancilla
- ADL Diagnostic Chile, Sector la Vara, Puerto Montt 5480000, Chile; (Y.Y.); (A.O.)
| |
Collapse
|
3
|
Gao S, Han B, Xu B, Wang N, Zhang Y, Liu X, Zhang M, Wang G, Guan X, Huang J, Liu M, Shi W. SAV Nsp2 regulates NF-κB signaling to induce inflammatory responses by targeting host DDX3. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104612. [PMID: 36473548 DOI: 10.1016/j.dci.2022.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Salmon alphavirus (SAV) infection leads to severe pancreas disease (PD) with typical inflammatory responses in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Nsp2, an important nonstructural protein of SAV, can activate NF-κB signaling pathway to reduce inflammatory responses. However, the molecular mechanism remains unclear. In this study, the ML (279-421aa) of Nsp2 was revealed to be the key domain for activating NF-κB. We focused on a host protein, DEAD-box RNA helicase 3 (DDX3), that may interact with Nsp2 to regulate NF-κB-induced inflammatory. The interaction between DDX3 and Nsp2 was confirmed in vitro. Overexpression of DDX3 inhibited the activation of NF-κB by Nsp2. SAV Nsp2 relieves the inhibitory effect of DDX3 on NF-κB, thereby initiating the innate immune response. This study revealed the molecular mechanism of Nsp2-induced inflammatory response by targeting DDX3 to activate NF-κB, providing a theoretical basis for revealing the underlying infection mechanism and pathogenesis of SAV.
Collapse
Affiliation(s)
- Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bing Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Baoxing Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanru Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuefei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Exprerimental Medicine Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
4
|
Zhao JZ, Xu LM, Ren GM, Shao YZ, Lu TY. Identification and characterization of DEAD-box RNA helicase DDX3 in rainbow trout (Oncorhynchus mykiss) and its relationship with infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104493. [PMID: 35840014 DOI: 10.1016/j.dci.2022.104493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
DDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.2 kDa (686 aa), 76.4 kDa (709 aa), 77.8 kDa (711 aa), 78.0 kDa (718 aa), and 78.8 kDa (729 aa) and the predicted isoelectric points were 6.91, 7.63, 7.63, 7.18, and 7.23, respectively. All rainbow trout DDX3 proteins contained two conserved RecA-like domains that were similar to the DDX3 protein reported in mammals. Phylogenetic analysis showed that the five cloned rainbow trout DDX3 were separate from mammals but clustered with fish, especially Northern pike (Esox lucius) and Nile tilapia (Oreochromis niloticus). RT-qPCR analysis showed that the DDX3 gene was broadly expressed in all tissues studied. The expression of DDX3 after infectious hematopoietic necrosis virus (IHNV) infection increased gradually after the early stage of IHNV infection, decreased gradually with the proliferation of IHNV in vivo (liver, spleen, and kidney), and was significantly decreased after the in vitro infection of epithelioma papulosum cyprini (EPC) and rainbow trout gonad cell line-2 (RTG-2) cell lines. We also found that rainbow trout DDX3 was significantly increased by a time-dependent mechanism after the poly I:C treatment of EPC and RTG cells; however no significant changes were observed with lipopolysaccharide (LPS) treatment. Knockdown of DDX3 by siRNA showed significantly increased IHNV replication in infected RTG cells. This study suggests that DDX3 has an important role in host defense against IHNV infection and these results may provide new insights into IHNV pathogenesis and antiviral drug research.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Guang-Ming Ren
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Yi-Zhi Shao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
5
|
Fish Innate Immune Response to Viral Infection-An Overview of Five Major Antiviral Genes. Viruses 2022; 14:v14071546. [PMID: 35891526 PMCID: PMC9317989 DOI: 10.3390/v14071546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fish viral diseases represent a constant threat to aquaculture production. Thus, a better understanding of the cellular mechanisms involved in establishing an antiviral state associated with protection against virus replication and pathogenesis is paramount for a sustainable aquaculture industry. This review summarizes the current state of knowledge on five selected host innate immune-related genes in response to the most relevant viral pathogens in fish farming. Viruses have been classified as ssRNA, dsRNA, and dsDNA according to their genomes, in order to shed light on what those viruses may share in common and what response may be virus-specific, both in vitro (cell culture) as well as in vivo. Special emphasis has been put on trying to identify markers of resistance to viral pathogenesis. That is, those genes more often associated with protection against viral disease, a key issue bearing in mind potential applications into the aquaculture industry.
Collapse
|
6
|
Yang C, Yao J, Yi H, Huang X, Zhao W, Yang Z. To unwind the biological knots: The DNA/RNA G-quadruplex resolvase RHAU (DHX36) in development and disease. Animal Model Exp Med 2022; 5:542-549. [PMID: 35789129 PMCID: PMC9773310 DOI: 10.1002/ame2.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.
Collapse
Affiliation(s)
- Chensi Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Jie Yao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Huijuan Yi
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Xinyi Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Wukui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| |
Collapse
|
7
|
Zhou X, Gao F, Lu M, Liu Z, Wang M, Cao J, Ke X, Yi M. DDX43 recruits TRIF or IPS-1 as an adaptor and activates the IFN-β pathway in Nile tilapia (Oreochromis niloticus). Mol Immunol 2022; 143:7-16. [PMID: 34990938 DOI: 10.1016/j.molimm.2021.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/13/2023]
Abstract
DDX43 is one of the members of the DExD/H-box protein family, and emerging data suggest that it may play an important role in antiviral immunity across mammals. However, little is known about DDX43 in the fish immune response. In this study, we isolated the cDNA sequence of ddx43 in Nile tilapia (Oreochromis niloticus). The ddx43 gene was 2338 bp in length, contained an open reading frame (ORF) of 2064 bp and encoded a polypeptide of 687 amino acids. The predicted protein of OnDDX43 has three conserved domains, including the RNA binding domain KH, DEAD-like helicase superfamily DEXDc and C-terminal HELICc domain. In healthy Nile tilapia, the Onddx43 transcript was broadly expressed in all examined tissues, with the highest expression levels in the muscle and brain and the lowest in the liver. After challenge with Streptococcus agalactiae, lipopolysaccharides (LPS) and polyinosinic polycytidylic acid (Poly I:C), the expression level of Onddx43 mRNA was upregulated or downregulated in all of the tissues tested. Overexpression of OnDDX43 in 293 T cells showed that it has a positive regulatory effect on IFN-β. The subcellular localization showed that OnDDX43 was expressed in the cytoplasm. We performed further pull-down assays and found that OnDDX43 interacted with both interferon-β promoter stimulator1 (IPS-1) and TIR domain-containing adaptor inducing interferon-β (TRIF).
Collapse
Affiliation(s)
- Xin Zhou
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fengying Gao
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Miao Wang
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| |
Collapse
|
8
|
Lin Z, Wang J, Zhu W, Yu X, Wang Z, Ma J, Wang H, Yan Y, Sun J, Cheng Y. Chicken DDX1 Acts as an RNA Sensor to Mediate IFN-β Signaling Pathway Activation in Antiviral Innate Immunity. Front Immunol 2021; 12:742074. [PMID: 34630423 PMCID: PMC8494776 DOI: 10.3389/fimmu.2021.742074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Chickens are the natural host of Newcastle disease virus (NDV) and avian influenza virus (AIV). The discovery that the RIG-I gene, the primary RNA virus pattern recognition receptor (PRR) in mammals, is naturally absent in chickens has directed attention to studies of chicken RNA PRRs and their functions in antiviral immune responses. Here, we identified Asp-Glu-Ala-Asp (DEAD)-box helicase 1 (DDX1) as an essential RNA virus PRR in chickens and investigated its functions in anti-RNA viral infections. The chDDX1 gene was cloned, and cross-species sequence alignment and phylogenetic tree analyses revealed high conservation of DDX1 among vertebrates. A quantitative RT-PCR showed that chDDX1 mRNA are widely expressed in different tissues in healthy chickens. In addition, chDDX1 was significantly upregulated after infection with AIV, NDV, or GFP-expressing vesicular stomatitis virus (VSV-GFP). Overexpression of chDDX1 in DF-1 cells induced the expression of IFN-β, IFN-stimulated genes (ISGs), and proinflammatory cytokines; it also inhibited NDV and VSV replications. The knockdown of chDDX1 increased the viral yield of NDV and VSV and decreased the production of IFN-β, which was induced by RNA analog polyinosinic-polycytidylic acid (poly[I:C]), by AIV, and by NDV. We used a chicken IRF7 (chIRF7) knockout DF-1 cell line in a series of experiments to demonstrate that chDDX1 activates IFN signaling via the chIRF7 pathway. Finally, an in-vitro pulldown assay showed a strong and direct interaction between poly(I:C) and the chDDX1 protein, indicating that chDDX1 may act as an RNA PRR during IFN activation. In brief, our results suggest that chDDX1 is an important mediator of IFN-β and is involved in RNA- and RNA virus-mediated chDDX1-IRF7-IFN-β signaling pathways.
Collapse
Affiliation(s)
- Zhenyu Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Wenxian Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Xiangyu Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, China
| |
Collapse
|
9
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
10
|
Firmino JP, Fernández-Alacid L, Vallejos-Vidal E, Salomón R, Sanahuja I, Tort L, Ibarz A, Reyes-López FE, Gisbert E. Carvacrol, Thymol, and Garlic Essential Oil Promote Skin Innate Immunity in Gilthead Seabream ( Sparus aurata) Through the Multifactorial Modulation of the Secretory Pathway and Enhancement of Mucus Protective Capacity. Front Immunol 2021; 12:633621. [PMID: 33777020 PMCID: PMC7994269 DOI: 10.3389/fimmu.2021.633621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.
Collapse
Affiliation(s)
- Joana P Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,TECNOVIT-FARMFAES, S.L. Pol. Ind. Les Sorts, Alforja, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eva Vallejos-Vidal
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| |
Collapse
|
11
|
Schult P, Paeschke K. The DEAH helicase DHX36 and its role in G-quadruplex-dependent processes. Biol Chem 2020; 402:581-591. [PMID: 33021960 DOI: 10.1515/hsz-2020-0292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
DHX36 is a member of the DExD/H box helicase family, which comprises a large number of proteins involved in various cellular functions. Recently, the function of DHX36 in the regulation of G-quadruplexes (G4s) was demonstrated. G4s are alternative nucleic acid structures, which influence many cellular pathways on a transcriptional and post-transcriptional level. In this review we provide an overview of the current knowledge about DHX36 structure, substrate specificity, and mechanism of action based on the available models and crystal structures. Moreover, we outline its multiple functions in cellular homeostasis, immunity, and disease. Finally, we discuss the open questions and provide potential directions for future research.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, D-53127Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, D-53127Bonn, Germany
| |
Collapse
|
12
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|