1
|
Yang C, Shu J, Yang X, Miao Y, Liu J, Li J, Xiao J, Kong W, Xu Z, Feng H. USP14 negatively regulates IFN signaling by dampening K63-linked ubiquitination of TBK1 in black carp. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109559. [PMID: 38636737 DOI: 10.1016/j.fsi.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.
Collapse
Affiliation(s)
- Can Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Juanjuan Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yujia Miao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Jang JH, Kim H, Kim HR, Cho JH. Rainbow trout DUBA inhibits type I interferon signaling by deubiquitinating TRAF3. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109581. [PMID: 38670412 DOI: 10.1016/j.fsi.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ha Rang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
3
|
Jang JH, Jung IY, Kim H, Cho JH. Rainbow trout USP4 downregulates LPS-induced inflammation by removing the K63-linked ubiquitin chain on TAK1. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1019-1026. [PMID: 36372204 DOI: 10.1016/j.fsi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitin-specific protease 4 (USP4) is pivotal in negatively regulating the Toll-like receptor (TLR) signaling-mediated innate immune response. Although USP4 has been well studied in mammals, its role in TLR signaling pathways in fish remains largely unknown. In this study, we investigated the role of USP4 (OmUSP4) in regulating TLR response in rainbow trout Oncorhynchus mykiss. OmUSP4 contained the characteristic domains conserved in other USP4s: domain in USP (DUSP), ubiquitin-like (UBL), and the bi-part catalytic domain known as USP. OmUSP4 expression was increased in RTH-149 cells by stimulation with fish-pathogenic bacteria and bacterial ligands. Gain- and loss-of-function experiments revealed that OmUSP4 mitigated the activation of MAPKs and NF-κB, as well as the expression of pro-inflammatory cytokines in LPS-stimulated cells. OmUSP4 interacted with TAK1, a critical mediator in TLR-mediated NF-κB signaling pathways. LPS stimulation increased the K63-linked polyubiquitination of TAK1, which was significantly suppressed when OmUSP4 was compelled to be overexpressed. These results imply that OmUSP4 might function like mammals to downregulate LPS-induced inflammation in rainbow trout by removing the K63-linked ubiquitin chain on TAK1.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - In Young Jung
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
Blockade of USP14 potentiates type I interferon signaling and radiation-induced antitumor immunity via preventing IRF3 deubiquitination. Cell Oncol (Dordr) 2022; 45:1347-1361. [PMID: 36205846 DOI: 10.1007/s13402-022-00724-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The adaptive immune responses induced by radiotherapy has been demonstrated to largely rely on STING-dependent type I interferons (IFNs) production. However, irradiated tumor cells often fail to induce dendritic cells (DCs) to produce type I IFNs. Hence, we aim to uncover the limitation of STING-mediated innate immune sensing following radiation, and identify efficient reagents capable to rescue the failure of type I IFNs induction for facilitating radiotherapy. METHODS A targeted cell-based phenotypic screening was performed to search for active molecules that could elevate the production of type I IFNs. USP14 knockout or inhibition was assayed for IFN production and the activation of STING signaling in vitro. The mechanisms of USP14 were investigated by western blot and co-immunoprecipitation in vitro. Additionally, combinational treatments with PT33 and radiation in vivo and in vitro models were performed to evaluate type I IFNs responses to radiation. RESULTS PT33 was identified as an enhancer of STING agonist elicited type I IFNs production to generate an elevated and durable STING activation profile in vitro. Mechanistically, USP14 inhibition or deletion impairs the deubiquitylation of K63-linked IRF3. Furthermore, blockade of USP14 with PT33 enhances DC sensing of irradiated-tumor cells in vitro, and synergizes with radiation to promote systemic antitumor immunity in vivo. CONCLUSION Our findings reveal that USP14 is one of the major IFN production suppressors and impairs the activation of IRF3 by removing the K63-linked ubiquitination of IRF3. Therefore, blockage of USP14 results in the gain of STING signaling activation and radiation-induced adaptive immune responses.
Collapse
|
5
|
Zhang Y, Huang L, Gao X, Qin Q, Huang X, Huang Y. Grouper USP12 exerts antiviral activity against nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:332-341. [PMID: 35032679 DOI: 10.1016/j.fsi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-specific proteases (USPs) have attracted particular attention due to their multiple functions in different biological processes. USP12, a member of the USP family, has been demonstrated to exert critical roles in diverse cellular processes, including cell death, cancer and antiviral immunity. Here, we cloned a USP12 homolog from orange spotted grouper (Epinephelus coioides, E. coioides), and its roles in fish RNA virus replication were investigated. EcUSP12 contained a 1119-bp open reading frame (ORF) encoding a 372-amino acid polypeptide, which shared 100.00% and 91.32% identity with USP12 homolog of Etheostoma cragini and Homo sapiens, respectively. Sequence analysis indicated that EcUSP12 contained a conserved peptidase-C19G domain (aa 40-369). qPCR analysis showed that EcUSP12 transcript was most abundant in head kidney and spleen of grouper E. coioides. The expression of EcUSP12 was significantly upregulated in grouper spleen (GS) cells in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. Subcellular localization analysis showed that EcUSP12 was evenly distributed throughout the cytoplasm, and mainly co-localized with endoplasmic reticulum (ER). Interestingly, during RGNNV infection, the endogenous distribution of EcUSP12 was obviously altered, and mostly overlapped with viral coat protein (CP). Co-Immunoprecipitation (Co-IP) assay indicated that EcUSP12 interacted with viral CP. In addition, overexpression of EcUSP12 significantly inhibited the replication of RGNNV in vitro, as evidenced by the decrease in viral gene transcription and protein synthesis during infection. Consistently, knockdown of EcUSP12 by small interfering RNA (siRNA) promoted the replication of RGNNV. Furthermore, EcUSP12 overexpression also increased the transcription level of inflammatory factors and interferon-related genes, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, interferon regulatory factor 3 (IRF3), and IRF7. Taken together, our results demonstrated that EcUSP12, as a positive regulator of IFN signaling, interacted with viral CP to inhibit virus infection.
Collapse
Affiliation(s)
- Ya Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolin Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Youhua Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Wang F, Ning S, Yu B, Wang Y. USP14: Structure, Function, and Target Inhibition. Front Pharmacol 2022; 12:801328. [PMID: 35069211 PMCID: PMC8766727 DOI: 10.3389/fphar.2021.801328] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.
Collapse
Affiliation(s)
| | | | | | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|