1
|
Elshopakey GE, Abdelwarith AA, Younis EM, Davies SJ, Elbahnaswy S. Alleviating effects of Gracilaria verrucosa supplement on non-specific immunity, antioxidant capacity and immune-related genes of pacific white shrimp (Litopenaeus vannamei) provoked with white spot syndrome virus. BMC Vet Res 2024; 20:487. [PMID: 39455973 PMCID: PMC11515225 DOI: 10.1186/s12917-024-04304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Our work evaluated the possible underlying roles of dietary dried seaweed (Gracilaria verrucosa; GV) on the inherent immune response, antioxidant capacity, immune-related gene expression, and protection of whiteleg shrimp (Litopenaeus vannamei) contra white spot syndrome virus (WSSV). Three hundred and sixty healthy L. vannamei (15.26 g ± 1.29 g) were graded into four supplemental groups ( Triplicate/group) and fed with diets including 0 (control), 2, 4, and 8 g GV (kg diet) -1 for 21 days. Following the feeding period, each group of shrimp received an intramuscular WSSV injection (1.4 × 106 copies/ml). Hemolymph and gills samples were collected before and after the challenge with WSSV. Notably, the administration of dietary GV significantly enhanced the innate immune parameters of pacific white shrimp including total hemocyte count (THC), phagocytosis, phenoloxidase activity, reactive oxygen species (ROS) production, and lysozyme activity before and after challenge with WSSV. Additionally, dietary supplementation of 4, and 8 g of GV (kg diet)-1 remarkably elevated ACP, AKP, SOD, GPx, and catalase activities along with a decrease in the MDA level in gills of shrimp before and post-WSSV challenge. In response to the GV supplement, significant upregulation of expression of ALF1, CRU1, PEN4, and CTL with downregulation of TRAF6, STAT, TLR1, and NOS genes was recorded in the gills tissue before and post-challenge with WSSV, especially at a dose of 8.0 GV g kg - 1. Dietary inoculated shrimp with GV revealed notably higher survival percentages after being challenged with WSSV. Conclusively, these data indicate that Gracilaria verrucosa can be recommended as a valuable supplemented seaweed to stimulate the innate immunity and enhance the health of Litopenaeus vannamei against viral infection.
Collapse
Affiliation(s)
- Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt.
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Wu Z, Wu W, Yang S, Cheng F, Lv J, Shao Y, Tang X, Li E, Zhao Q. Safety evaluation and effects of dietary phlorotannins on the growth, health, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109569. [PMID: 38641216 DOI: 10.1016/j.fsi.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Phlorotannins are phenolic compounds with diverse biological activities, yet their efficacy in aquatic animals currently remains unclear. This investigation scrutinized the influence of phlorotannins on the growth, immunity, antioxidant capacity, and intestinal microbiota in Litopenaeus vannamei, concurrently evaluating the potential adverse effects of phlorotannins on L. vannamei. A base diet without phlorotannins supplementation was used as a control, and 4 groups of diets with different concentrations (0, 0.5, 1.0, 2.0 g kg-1) of phlorotannins were formulated and fed to juvenile shrimp (0.25 ± 0.01 g) for 60 days followed by a 24-h challenge with Vibrio parahaemolyticus with triplicate in each group. Compared with the control, dietary 2.0 g kg-1 phlorotannins significantly improved the growth of the shrimp. The activities of enzymes related to cellular immunity, humoral immunity, and antioxidants, along with a notable upregulation in the expression of related genes, significantly increased. After V. parahaemolyticus challenge, the cumulative survival rates of the shrimp demonstrated a positive correlation with elevated concentrations of phlorotannins. In addition, the abundance of Bacteroidetes and functional genes associated with metabolism increased in phlorotannins supplementation groups. Phlorotannins did not elicit any detrimental effects on the biological macromolecules or histological integrity of the hepatopancreas or intestines. Simultaneously, it led to a significant reduction in malondialdehyde content. All results indicated that phlorotannins at concentrations of 2.0 g kg-1 can be used as safe feed additives to promote the growth, stimulate the immune response, improve the antioxidant capacity and intestinal health of L. vannamei, and an protect shrimp from damage caused by oxidative stress.
Collapse
Affiliation(s)
- Zijie Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Wenbo Wu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Shouguo Yang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Fen Cheng
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Jingyi Lv
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Yingjin Shao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China
| | - Xianming Tang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
3
|
Li S, Zhang K, Du W, Li F. Two Independently Comparative Transcriptome Analyses of Hemocytes Provide New Insights into Understanding the Disease-Resistant Characteristics of Shrimp against Vibrio Infection. BIOLOGY 2023; 12:977. [PMID: 37508407 PMCID: PMC10376663 DOI: 10.3390/biology12070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Vibrio parahaemolyticus carrying plasmid encoding toxins PirA and PirB is one of the causative agents leading to the severe disease of AHPND in shrimp aquaculture. However, there is a lack of deep understanding of the host-resistant characteristics against V. parahaemolyticus infection. Here, we established a method to obtain hemocytes from shrimp with different V. parahaemolyticus-resistant abilities and performed comparative transcriptome analysis on the expression profiles at the background level of hemocytes from shrimp in two independent populations. Principal component analysis and sample clustering results showed that samples from the same population had a closer relationship than that from shrimp with similar disease-resistant abilities. DEGs analysis revealed that the number of DEGs between two populations was much more than that between V. parahaemolyticus-resistant and susceptible shrimp. A total of 31 DEGs and 5 DEGs were identified from the comparison between V. parahaemolyticus-resistant and susceptible shrimp from populations 1 and 2, respectively. DEGs from population 1 were mainly cytoskeleton-related genes, metabolic related genes, and immune related genes. Although there was no DEGs overlap between two comparisons, DEGs from population 2 also included genes related to cytoskeleton and metabolism. The data suggest that these biological processes play important roles in disease resistance, and they could be focused by comprehensive analysis of multiple omics data. A new strategy for screening key biological processes and genes related to disease resistance was proposed based on the present study.
Collapse
Affiliation(s)
- Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Keke Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenran Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Cao XT, Wu LJ, Xu FL, Li XC, Lan JF. PcTrim prevents early infection with white spot syndrome virus by inhibiting AP1-induced endocytosis. Cell Commun Signal 2023; 21:104. [PMID: 37158899 PMCID: PMC10165819 DOI: 10.1186/s12964-023-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 05/10/2023] Open
Abstract
Viruses have evolved various strategies to achieve early infection by initiating transcription of their own early genes via host transcription factors, such as NF-κb, STAT, and AP1. How the host copes with this immune escape has been a topic of interest. Tripartite motif (TRIM) family proteins with RING-type domains have E3 ubiquitin ligase activity and are known as host restriction factors. Trim has been reported to be associated with phagocytosis and is also believed to be involved in the activation of autophagy. Preventing the virus from entering the host cell may be the most economical way for the host to resist virus infection. The role of TRIM in the early stage of virus infection in host cells remains to be further interpreted. In the current study, a crayfish TRIM with a RING-type domain, designated as PcTrim, was significantly upregulated under white spot syndrome virus (WSSV) infection in the red swamp crayfish (Procambarus clarkii). Recombinant PcTrim significantly inhibited WSSV replication in crayfish. RNAi targeting PcTrim or blocking PcTrim with an antibody promoted WSSV replication in crayfish. Pulldown and co-IP assays showed that PcTrim can interact with the virus protein VP26. PcTrim restricts the expression level of dynamin, which is involved in the regulation of phagocytosis, by inhibiting AP1 entry into the nucleus. AP1-RNAi effectively reduced the expression levels of dynamin and inhibited host cell endocytosis of WSSV in vivo. Our study demonstrated that PcTrim might reduce early WSSV infection by binding to VP26 and then inhibiting AP1 activation, resulting in reduced endocytosis of WSSV in crayfish hemocytes. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Chen WY, Gong YQ, Zhou XR, Zhang RD, Liu SH, Lu W, Ren Q, Huang Y. Eight TRIM32 isoforms from oriental river prawn Macrobrachium nipponense are involved in innate immunity during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:368-380. [PMID: 36243272 DOI: 10.1016/j.fsi.2022.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. In this study, full-length MnTRIM32 cDNA was obtained from oriental river prawn Macrobrachium nipponense, and eight MnTRIM32 isoforms generated by alternative splicing were identified. The open reading frames of the eight MnTRIM32 isoforms were predicted to be separately composed of 402, 346, 347, 346, 414, 358, 359, and 358 amino acid residues. Protein structural analysis revealed that all MnTRIM32 isoforms contained a RING domain and a coiled coil region. MnTRIM32 was ubiquitously expressed in all tissues tested, with the highest expression in the hepatopancreas. The mRNA levels of MnTRIM32 in the gills, stomach, and intestine of prawns were found to undergo time-dependent enhancement following white spot syndrome virus (WSSV) stimulation. Double-stranded RNA interference studies revealed that MnTRIM32 silencing significantly downregulated the expression levels of interferon (IFN) regulatory factor MnIRF, IFN-like factor MnVago4, and tumor necrosis factor MnTNF. Furthermore, knockdown of MnTRIM32 in WSSV-challenged prawns increased the expression of VP28 and the number of WSSV copies, suggesting that MnTRIM32 plays a positive role in limiting WSSV infection. These findings provided strong evidence for the important role of MnTRIM32 in the antiviral innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Wei-Yu Chen
- College of Water Conservancy and Hydropower Engineering, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yi-Qing Gong
- Institute of Water Science and Technology, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Xu-Ri Zhou
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Rui-Dong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Song-Hai Liu
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Wei Lu
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
6
|
Zhang H, Yang Z, Zhang R, Wang K, Yu H, Huang X. A TRIM-like protein restricts WSSV replication in the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 128:565-573. [PMID: 35964877 DOI: 10.1016/j.fsi.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Tripartite motif (TRIM) proteins are a multifunctional family of ubiquitin E3 ligases involved in multiple biological processes. Studies have shown that many TRIM proteins in mammals play vital roles in the host defense against viral pathogens. In the present study, we identified a novel TRIM gene (MnTrim-like) from the oriental river prawn, Macrobrachium nipponense. Predicted MnTrim-like protein contains the characteristic RING finger domain. MnTrim-like was abundantly distributed in hepatopancreas, intestine, stomach, and gills. Upon white spot syndrome virus (WSSV) challenge, transcripts of MnTrim-like in the stomach were significantly up-regulated. Knockdown of MnTrim-like increased the expression of VP28 and decreased the synthesis of several antimicrobial peptides, including two crustins and one anti-lipopolysaccharide factor. Besides, silencing of these three antimicrobial peptides (AMPs) led to an increase in the expression of VP28 and WSSV copies. Moreover, it was found that injection of recombinant MnTrim-like protein with WSSV could decrease the transcription of VP28 and the number of virus particles. These results suggest that this MnTrim-like may restrict WSSV infection by positively regulating the expression of AMPs with antiviral activities and directly interacting with viral components. This study will broaden our understanding about the function of TRIM in crustacean during viral infection.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhifang Yang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Ruidong Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kui Wang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hao Yu
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
7
|
Wan T, Wang Y, Wang C, Wang H, Li X, Li Y. Overexpression of TRIM32 promotes pancreatic β-cell autophagic cell death through Akt/mTOR pathway under high glucose conditions. Cell Biol Int 2022; 46:2095-2106. [PMID: 36040726 DOI: 10.1002/cbin.11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Tripartite motif protein 32 (TRIM32) belongs to the TRIM family protein and has been shown to be involve in insulin resistance in skeletal muscle and the liver. However, the effect of TRIM32 on pancreatic β-cell dysfunction and its mechanism remains unknown. In the current study, we found that serum TRIM32 concentrations of T2DM in patients were significantly elevated compared to those in healthy controls, which indicated that TRIM32 might be used as a diagnostic biomarker in T2DM patients. In INS-1 cells, exposure to high glucose (HG) conditions caused a significant elevation in TRIM32 expression and TRIM32 was located in the nucleus. Overexpression of TRIM32 in INS-1 cells exacerbated the effects of HG-induced autophagy and impaired insulin secretion. In contrast, the silencing of TRIM32 produced the opposite effect. Furthermore, TRIM32 overexpression decreased the phosphorylation levels of Akt and mTOR under HG conditions. However, the activation of Akt/mTOR by MHY1485 reversed the effects of TRIM32 on HG-treated INS-1 cells. Collectively, the present results suggested that TRIM32 participates in the development of T2DM by modulating autophagic cell death and insulin secretion, which might occur through the Akt/mTOR pathway. Thus, TRIM32 might be a promising target in T2DM therapy.
Collapse
Affiliation(s)
- Tingting Wan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yidan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Chunxu Wang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China.,Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiudan Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yanbo Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Peng C, Zhao C, Wang PF, Yan LL, Fan SG, Qiu LH. Identification of a TRIM32 from Penaeus monodon is involved in autophagy and innate immunity during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104169. [PMID: 34118280 DOI: 10.1016/j.dci.2021.104169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Many tripartite motif (TRIM) family proteins played an important role in regulating innate immune and autophagy pathway and were important for host defenses against viral pathogens. However, the role of TRIM proteins in autophagy and innate immunity during virus infection was seldom studied in crustaceans. In this study, a novel TRIM32 homolog was identified from Penaeus monodon (named PmTRIM32). PmTRIM32 was significantly upregulated by rapamycin stimulation and WSSV infection. RNA interference experiments showed that PmTRIM32 could restrict WSSV replication and lead P. monodon more resistance to WSSV challenge. Autophagy could be induced by WSSV or rapamycin challenge and has been proved to play a positive role in restricting WSSV replication in P. monodon. The autophagy activity induced by WSSV or rapamycin challenge could be obviously inhibited by silence of PmTRIM32 in P. monodon. Further studies revealed that PmTRIM32 positively regulated the expression of nuclear transcription factor (NF-κB) and it mediated antimicrobial peptides. Moreover, Pull-down and in vitro ubiquitination assay demonstrated that PmTRIM32 could interact with WSSV envelope protein and target it for ubiquitination in vitro. Collectively, this study demonstrated that PmTRIM32 restricted WSSV replication and was involved in positively regulating autophagy and NF-κB pathway during WSSV infection in P. monodon.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Key Laboratory of Exploration and Utilization of Aquatic Resources, Ministry of Education; National Demonstration Center for Experimental Fisheries Science Education; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Peng-Fei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lu-Lu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Li-Hua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Zhai B, Li X, Lin C, Yan P, Zhao Q, Li E. Proteomic analysis of hemocyte reveals the immune regulatory mechanisms after the injection of corticosteroid-releasing hormone in mud crab Scylla Paramamosain. J Proteomics 2021; 242:104238. [PMID: 33930554 DOI: 10.1016/j.jprot.2021.104238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Corticosteroid-releasing hormone (CRH) is a crucial neuroendocrine-immune factor regulating the immune response of Scylla paramamosain. To understand the regulatory mechanisms of CRH in S. paramamosain, the hemolymph of S. paramamosain with injection of CRH (1.5 ng/crab) at 24 h were chosen to perform proteomic analysis in this study. Furthermore, quantitative real-time PCR (RT-PCR) method was used to validate the accuracy of proteomic data at 24 h after CRH injection. The proteomic data showed that 255 DEPs were identified, in which 231 and 24 were up- or down-regulated, respectively. Besides, the results of enriched pathways showed that the DEPs were involved in signaling pathways, cellular immunity, humoral immunity and the response of immune related processes. These results revealed that CRH promoted the activation of signal transduction, regulated immune systems and antioxidation, and enhanced the immune related processes (such as protein synthesis, protein transport, carbohydrate mobilization and energy redistribution). These findings will benefit to foster the understanding on the effects of glucocorticoids on neuroendocrine-immune (NEI) networks of crustacean, and supply a substantial material and foundation for further researching of the NEI response. SIGNIFICANCE: Corticotrophin-releasing hormone (CRH) is a 41-amino acid neuropeptide and has been preliminarily studied in aquatic animals. CRH can regulate many important physiological activities comprising protein synthesis, energy metabolism, growth, breeding and behavior in fish, which play an important roles in neuroendocrine-immune (NEI) regulatory network of fish. The neuroendocrine system of crustacean has a primary research, that inspired by fish NEI network. Despite the research on the neuroendocrine system in crustacean has rapidly increased in recent years, our understanding of the regulation between neuroendocrine system and immune system in crustacean is still limited. The research on the strategy of NEI network in crustaceans becomes a significant issue. In the present study, the isobaric tags for relative and absolute quantification (iTRAQ) technology approach were applied to examine the NEI network of Scylla Paramamosain. control group and treatment group (CRH: 1.5 ng/crab) were settled for the iTRAQ experiment, and sampled at 24 h after CRH injection. The study aimed to gain knowledge on the immune response in Scylla Paramamosain after CRH injection and identify related differentially expressed proteins (DEPs) of the crab. The results of this study provide a preliminary resource for analysis the immune mechanism for crustaceans. In general, our work represents the first report of the utilization of the iTRAQ proteomics method for the study of NEI regulatory network in Scylla Paramamosain after CRH injection. We identified a number of DEPs involved in diverse pathways including immune signaling pathways, cellular immunity, humoral immunity, immune related process. These results demonstrated a very complex network involving immune and multiple related metabolic pathways in hemocytes of Scylla Paramamosain and will be of great value in understanding the crab neuroendocrine-immune immune mechanism.
Collapse
Affiliation(s)
- Bin Zhai
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaohong Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Cheng Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Peiyu Yan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|