1
|
Sanguino-Ortiz W, Espinosa-Ruiz C, Esteban Abad MÁ, Román CP, Hoyos-Concha JL. Effect of fish meal substitution with trout viscera protein hydrolysate on the innate immune response of red tilapia (Oreochromis spp). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:56. [PMID: 40011259 DOI: 10.1007/s10695-024-01444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025]
Abstract
This study evaluated the effect of replacing fish meal (FM) with concentrated trout viscera protein hydrolysate (TVPH) on the immune response in juvenile red tilapia (Oreocheromis spp). Five isoenergetic and isoproteic experimental diets were prepared by substituting FM with TVPH at different substitution ratios: 0% (control, D1) 25% (D2), 50% (D3), 75% (D4), and 100% (D5). A total of 180 red tilapia were distributed in 15 tanks. Fish from three tanks were fed daily at 2% of the biomass for 25 days with one of the five diets mentioned above. At the end of the trial, the fish were counted, weighed, measured, and skin mucus and serum samples were obtained to study different parameters related to humoral immunity. The results indicate a 100% survival rate in all fish groups and did not show significant differences in terms of growth and feed efficiency. On the other hand, the fish fed diets D2 and D3 had significantly higher serum protein values. Also, fish fed the D2 or D5 diets had higher lysozyme activity and fish fed the D2 diet also had significantly higher total immunoglobulin levels than fish fed the control diet. In mucus, fish fed the D2 or D4 diets showed significantly higher mucus protein levels than control fish. However, anti-protease and bactericidal activity decreased in fish fed the D5 or D4 diets, respectively. These results demonstrate that the D2 and D3 diets positively modulate the immune response of juvenile red tilapia compared to that of fish fed the control diet.
Collapse
Affiliation(s)
- Wilmer Sanguino-Ortiz
- Department of Hydrobiological Resources, Faculty of Livestock Sciences, Torobajo University Citadel, University of Nariño, 52001, Nariño, Colombia.
| | - Cristóbal Espinosa-Ruiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban Abad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Críspulo Perea Román
- Faculty of Agricultural Sciences, University of Cauca, Vereda Las Guacas, 190003, Cauca, Colombia
| | - José Luis Hoyos-Concha
- Faculty of Agricultural Sciences, University of Cauca, Vereda Las Guacas, 190003, Cauca, Colombia
| |
Collapse
|
2
|
Fernandez R, Colás-Ruiz NR, Lara-Martín PA, Fernández-Cisnal R, Hampel M. Proteomic analysis in the brain and liver of sea bream (Sparus aurata) exposed to the antibiotics ciprofloxacin, sulfadiazine, and trimethoprim. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124308. [PMID: 38844040 DOI: 10.1016/j.envpol.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 μg L-1 of CIP, 3.8 ± 2.7 μg L-1 of SULF and 25.7 ± 10.8 μg L-1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65, Barranquilla, Colombia; Center for Research and Innovation in Biodiversity and Climate Change (ADAPTIA), University Simón Bolívar, Barranquilla 59-65, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510, Puerto Real, Spain
| |
Collapse
|
3
|
Chen H, Gu X, Mao Z, Zeng Q, Jin M, Wang W, Martyniuk CJ. Molecular, behavioral, and growth responses of juvenile yellow catfish (Tachysurus fulvidraco) exposed to carbamazepine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106929. [PMID: 38663201 DOI: 10.1016/j.aquatox.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 µg/L for 14 days. The fish exposed to 10 and 100 μg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 μg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 μg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi 276000, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 United States
| |
Collapse
|
4
|
Del Piano F, Almroth BC, Lama A, Piccolo G, Addeo NF, Paciello O, Martino G, Esposito S, Mercogliano R, Pirozzi C, Meli R, Ferrante MC. Subchronic oral exposure to polystyrene microplastics affects hepatic lipid metabolism, inflammation, and oxidative balance in gilthead seabream (Sparus aurata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116455. [PMID: 38772140 DOI: 10.1016/j.ecoenv.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Microplastics (MPs) pose a clear threat to aquatic organisms affecting their health. Their impact on liver homeostasis, as well as on the potential onset of nonalcoholic fatty liver disease (NAFLD), is still poorly investigated and remains almost unknown. The aim of this study was to evaluate the outcomes of subchronic exposure to polystyrene MPs (PS-MPs; 1-20 μm; 0, 25, or 250 mg/kg b.w./day) on lipid metabolism, inflammation, and oxidative balance in the liver of gilthead seabreams (Sparus aurata Linnaeus, 1758) exposed for 21 days via contaminated food. PS-MPs induced an up-regulation of mRNA levels of crucial genes associated with lipid synthesis and storage (i.e., PPARy, Srebp1, Fasn) without modifications of genes involved in lipid catabolism (i.e., PPARα, HL, Pla2) or transport and metabolism (Fabp1) in the liver. The increase of CSF1R and pro-inflammatory cytokines gene expression (i.e., TNF-α and IL-1β) was also observed in exposed fish in a dose-dependent manner. These findings were confirmed by hepatic histological evaluations reporting evidence of lipid accumulation, inflammation, and necrosis. Moreover, PS-MPs caused the impairment of the hepatic antioxidant defense system through the alteration of its enzymatic (catalase, superoxide dismutase, and glutathione reductase) and non-enzymatic (glutathione) components, resulting in the increased production of reactive oxygen species (ROS) and malondialdehyde (MDA), as biomarkers of oxidative damage. The alteration of detoxifying enzymes was inferred by the decreased Ethoxyresorufin-O-deethylase (EROD) activity and the increased activity of glutathione-S-transferase (GST) at the highest PS-MP dose. The study suggests that PS-MPs affect the liver health of gilthead seabream. The liver dysfunction and damage caused by exposure to PS-MPs result from a detrimental interplay of inflammation, oxidative damage, and antioxidant and detoxifying enzymatic systems modifications, altering the gut-liver axis homeostasis. This scenario is suggestive of the involvement of MP-induced effects in the onset and progression of hepatic lipid dysfunction in gilthead seabream.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy; Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Povo, Trento 38123, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Giovanni Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples 80137, Italy.
| |
Collapse
|
5
|
Marjan P, Martyniuk CJ, Arlos MJ, Servos MR, Ruecker NJ, Munkittrick KR. Identifying transcriptomic indicators of tertiary treated municipal effluent in longnose dace (Rhinichthys cataractae) caged under semi-controlled conditions in experimental raceways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171257. [PMID: 38417510 DOI: 10.1016/j.scitotenv.2024.171257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
To evaluate effects of tertiary treated wastewater treatment plant effluent (MWWE) on transcriptomic responses in longnose dace (Rhinichthys cataractae; LND) we conducted a semi-controlled study in experimental raceways (Advancing Canadian Water Assets facility) imbedded in the Pine Creek treatment plant (Calgary, AB). LND collected from a reference site in the Bow River (REF) were caged in raceways containing either 5 % Pine Creek effluent (PC) or Bow River water (BR; control) over 28 d. Liver transcriptomes were analyzed in males and females sampled on days 7, 14 and 28 from BR and PC, and compared to REF fish on day 0. Concurrent with the caging, selected environmental substances of concern were analyzed in the BR and PC. Significantly different unigenes (SDUs) in females (vs males) within both BR and PC raceways increased over time and compared to REF fish. Moreover, SDUs in females and males within the same treatment (i.e., BR, PC) showed a temporal increase as well as compared to REF fish. Time was the dominant factor affecting SDUs, whereas sex and treatment had less of an impact on the transcriptome profiling. Gene Set Enrichment Analysis of BR vs PC over time revealed effects on genes involved in growth, metabolism of carbohydrates and lipids, and immune system on day 7; however, by day 28, 80-100 % of the transcripts localized to enriched biomarkers were associated with tissue immune responses in both sexes. Exposure to 5 % effluent had significant effects on female liver somatic index but no effects were observed on other phenotypic health indices in either sex. BR was used as the source of reference water, but analyses showed trace amounts of ESOCs. Analyses did not point towards definitive response patterns that could be used in field-based ecotoxicogenomic studies on the impacts of well-treated MWWE but suggested compromised adaptive immune responses.
Collapse
Affiliation(s)
- Patricija Marjan
- University of Calgary, Department of Biological Sciences, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Christopher J Martyniuk
- University of Florida, Department of Physiological Sciences, College of Veterinary Medicine, 2187 Mowry Rd., Gainesville, FL 32611, USA
| | - Maricor J Arlos
- University of Alberta, Civil and Environmental Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Mark R Servos
- University of Waterloo, Department of Biology, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Norma J Ruecker
- The City of Calgary, Water Services, UEP-Water Resources, 2100, Station M, #35B, Calgary, AB T2P 2M5, Canada
| | - Kelly R Munkittrick
- University of Calgary, Department of Biological Sciences, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Dias M, Pereira M, Marmelo I, Anacleto P, Pousão-Ferreira P, Cunha SC, Fernandes JO, Petrarca M, Marques A, Martins M, Maulvault AL. Ecotoxicological responses of juvenile Sparus aurata to BDE-99 and BPA exposure: A multi-biomarker approach integrating immune, endocrine and oxidative endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170989. [PMID: 38365038 DOI: 10.1016/j.scitotenv.2024.170989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Pentabromodiphenyl ether (BDE-99) and bisphenol A (BPA) are synthetic organic compounds present in several daily use products. Due to their physicochemical properties, they are ubiquitously present in aquatic ecosystems and considered highly persistent. Recent evidence has confirmed that both emerging compounds are toxic to humans and terrestrial mammals eliciting a wide range of detrimental effects at endocrine and immune levels. However, the ecotoxicological responses that they can trigger in vertebrate marine species have not yet been established. Hence, this study aimed to investigate the ecotoxicological responses of juvenile Sparus aurata upon chronic (28 days) dietary exposure to BDE-99 and BPA (alone and combined) following an integrated multi-biomarker approach that combined fitness indicators (Fulton's K and splenosomatic indexes) with endocrine [cortisol, 17β-estradiol (E2), 11-ketotestosterone (11-KT) concentrations] and immune (peroxidase and antiprotease activities) endpoints in fish plasma, and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities, and lipid peroxidation (LPO)] endpoints in the fish spleen. The mixture of BDE-99 and BPA yielded the highest IBR index value in both plasma and spleen biomarkers, therefore, suggesting that the effects of these compounds are more severe when they act together. Endocrine biomarkers were the most responsive in the three contaminated treatments. Fitness indicators were not affected by the individual nor the interactive effects of BDE-99 and BPA. These findings highlight the relevance of accounting for the interactive effects of emerging chemical contaminants and integrating responses associated with distinct biological pathways when investigating their impacts on marine life, as such a multi-biomarker approach provides a broader, more realistic and adequate perspective of challenges faced by fish in a contaminated environment.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Marta Pereira
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isa Marmelo
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA-EPPO - Aquaculture Research Station, Portuguese Institute for the Sea and Atmosphere, Avenida do Parque Natural da Ria Formosa, 8700-194 Olhão, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mateus Petrarca
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Marta Martins
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
7
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
8
|
Messina CM, Manuguerra S, Arena R, Espinosa-Ruiz C, Curcuraci E, Esteban MA, Santulli A. Contaminant-induced oxidative stress underlies biochemical, molecular and fatty acid profile changes, in gilthead seabream (Sparus aurata L.). Res Vet Sci 2023; 159:244-251. [PMID: 37178628 DOI: 10.1016/j.rvsc.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Chemical contaminants such as heavy metals, polybrominated diphenyl ethers (PBDEs) and drugs, are constantly found in the marine environment determining the interest of the scientific community for their side effects on animal welfare, food safety and security. Few studies have analyzed the effects of mix of contaminants in fish, in terms of molecular and nutritional composition response, beside it is indispensable to think more and more on effect of contaminants along the food web system. In this study, Sparus aurata specimens were exposed for 15 days, by diet, to a mixture of carbamazepine (Cbz), polybrominated diphenyl ether-47 (PBDE-47) and cadmium chloride (CdCl2), at two doses (0.375 μg g-1 D1; 37.5 μg g-1 D2) (T15). After, fish were fed with a control diet, without contaminants mix, for other 15 days (T30). The study explored the effect on oxidative stress in the liver, analyzing specific molecular markers and effects on quality, by fatty acid profile and lipid peroxidation. Molecular markers involved in ROS scavenging, such as superoxide dismutase (sod), catalase (cat) and glutathione peroxidase (gpx) were evaluated by gene expression; as markers of quality and lipid peroxidation, the fatty acids (FAs) profile and the level of malondyaldeide (MDA) were assessed. Sod and cat genes underwent to up-regulation after 15 days of diet containing contaminants and showed down-regulation after the next 2 weeks of detoxification (T30). At T15, the FAs profile showed an increase of the saturated fatty acids (SFA), and a decrease of the polyunsatured fatty acids (PUFA). The MDA levels increased over time, indicating an ongoing radical damage. These results suggest that the effects of the contaminants can be perceived not only at molecular but also at nutritional level and that the molecular and biochemical markers adopted could be differently used to monitor the health of aquatic organisms in the marine environment.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Simona Manuguerra
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Rosaria Arena
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Cristobal Espinosa-Ruiz
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Eleonora Curcuraci
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - María Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Andrea Santulli
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
9
|
Yang Y, Guo X, Xu T, Yin D. Effects of carbamazepine on gut microbiota, ARGs and intestinal health in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114473. [PMID: 38321688 DOI: 10.1016/j.ecoenv.2022.114473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Carbamazepine (CBZ) in the aquatic environment is recognized as a potential threat to aquatic organisms and public health. However, the response of organism intestinal health, resistome, microbiota, and their relationship after CBZ exposure has been rarely reported. This study aimed to explore the impacts of CBZ on gut microbiota, antibiotic resistance genes (ARGs) and the expression of intestinal health related genes as well as their interaction using the zebrafish model. 16 S ribosomal RNA sequencing indicated CBZ altered the composition of gut microbiota. Using high-throughput quantitative polymerase chain reaction (HT-qPCR), we found the number and abundance of ARGs were impacted by CBZ levels and exposure duration. We also observed the upregulated expression of the pro-inflammatory gene IL6 and downregulated expression of toll-like receptor gene TLR2 and intestinal barrier gene TJP2a at different exposure times. Correlation analyses revealed that Geobacillus, Rhodococcus, Ralstonia, Delftia, Luteolibacter and Escherichia-Shigella might be the main bacterial genera carrying ARGs. Meanwhile, Cetobacterium and Aeromonas could be the dominant bacteria affecting intestinal health related genes. Our results could contribute to understanding the health risks of CBZ to the intestinal microecology of aquatic animals.
Collapse
Affiliation(s)
- Yiting Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Maria B, Maria MC, Antonio B, Simona M, Rosaria A, Andrea S, Giulia M, Marianna DC, Mario S. Chemical and biochemical responses to sub-lethal doses of mercury and cadmium in gilthead seabream (Sparus aurata). CHEMOSPHERE 2022; 307:135822. [PMID: 35963385 DOI: 10.1016/j.chemosphere.2022.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Specimens of Sparus aurata were exposed to sub-lethal concentrations of Hg and Cd for 25 days and the levels of both metals were investigated in organs and tissues. Bioaccumulation of Hg decreased as follow: gills > kidney > liver > skin > muscle, while the order of Cd bioaccumulation was: liver > kidney > gills > skin > muscle. Immediately after exposure, both metals showed the highest bioaccumulation in gills and skin indicating that these organs are reliable targets for biomonitoring studies after short term exposure. Metals introduction caused a significant time-dependent concentrations increase in kidney and liver, while in the muscle a significant increase of Hg was recorded only at the end of the experimentation. The effects of exposure were also investigated, at biochemical level, in the liver, which represents the main target of xenobiotics biotransformation and metabolism in fish. Exposed fishes exhibited a reduction of total lipid level, a decrease of polyunsaturated fatty acids (PUFA), together with a MDA increase. This suggests a direct effect of contaminants on oxidative stress induction that, through the MDA increase, altered the membrane fatty acids composition decreasing the PUFA content. As it regards molecular markers related to oxidative stress and lipid metanolism, a significant increase of Nrf2, Hif-1α and Ampk and a decrease of Fas were observed after exposure to both metals, while an Nf-kB increase was recorded in specimens exposed to Hg, docuemnting a correlation with oxidative stress and consequent metabolism adaptation. Finally, these results suggest the possibility to adopt these biomarkers to explore fish metabolic responses to environmental pollution.
Collapse
Affiliation(s)
- Bonsignore Maria
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| | - Messina Concetta Maria
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy; University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Bellante Antonio
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy.
| | - Manuguerra Simona
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Arena Rosaria
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Santulli Andrea
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Maricchiolo Giulia
- National Research Council of Italy, Institute of Biological Resources and Marine Biotechnologies (IRBIM-CNR), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Del Core Marianna
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| | - Sprovieri Mario
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| |
Collapse
|
11
|
Fernandez R, Colás-Ruiz NR, Martínez-Rodríguez G, Lara-Martín PA, Mancera JM, Trombini C, Blasco J, Hampel M. The antibacterials ciprofloxacin, trimethoprim and sulfadiazine modulate gene expression, biomarkers and metabolites associated with stress and growth in gilthead sea bream (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106243. [PMID: 35872527 DOI: 10.1016/j.aquatox.2022.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 μg L-1 for CIP, 3.8 ± 2.7 μg L-1 for SULF and 25.7 ± 10.8 μg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65 Barranquilla, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University Institute for Marine Research (INMAR), International Excellence Campus of the Sea (CEI-MAR), University of Cádiz, 11510 Puerto Real, Spain
| | - Chiara Trombini
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| |
Collapse
|
12
|
Zhang Y, Hu B, Qian X, Xu G, Jin X, Chen D, Tang J, Xu L. Transcriptomics-based analysis of co-exposure of cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) indicates mitochondrial dysfunction induces NLRP3 inflammasome and inflammatory cell death in renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113790. [PMID: 35753275 DOI: 10.1016/j.ecoenv.2022.113790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution often releases multiple contaminants resulting in as yet largely uncharacterized additive toxicities. Cadmium (Cd) is a widespread pollutant that induces nephrotoxicity in animal models and humans. However, the combined effect of Cd in causing nephrotoxicity with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a typical congener of polybrominated diphenyl ethers (PBDEs), has not been evaluated and mechanisms are not completely clear. Here, we applied transcriptome sequencing analysis to investigate the combined toxicity of Cd and BDE-47 in the renal tubular epithelial cell lines HKCs. Cd or BDE-47 exposure decreased cell viability in a dose-dependent manner, and exhibited cell swelling and rounding similar to necrosis, which was exacerbated by co-exposure. Transcriptomic analysis revealed 2191, 1331 and 3787 differentially-expressed genes following treatment with Cd, BDE-47 and co-exposure, respectively. Interestingly, functional annotation and enrichment analyses showed involvement of pathways for oxidative stress, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammatory cell death for all three treatments. Examination of indices of mitochondrial function and oxidative stress in HKC cells showed that the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and intracellular calcium ion concentration [Ca2+]i were elevated, while superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) were decreased. The ratio of apoptotic and necrotic cells and intracellular lactate dehydrogenase (LDH) release were increased by Cd or BDE-47 exposure, and was aggravated by co-exposure, and was attenuated by ROS scavenger N-Acetyl-L-cysteine (NAC). NLRP3 inflammasome and pyroptosis pathway-related genes of NLRP3, adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, interleukin-18 (IL-18) and IL-1β were elevated, while gasdermin D (GSDMD) was down-regulated, and protein levels of NLRP3, cleaved caspase-1 and cleaved GSDMD were increased, most of which were relieved by NAC. Our data demonstrate that exposure to Cd and BDE-47 induces mitochondrial dysfunction and triggers NLRP3 inflammasome and GSDMD-dependent pyroptosis leading to nephrotoxicity, and co-exposure exacerbates this effect, which could be attenuated by inhibiting ROS. This study provides a further mechanistic understanding of kidney damage, and co-exposure impact is worthy of concern and should be considered to improve the accuracy of environmental health assessment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaolan Qian
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jie Tang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
13
|
Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. SEPARATIONS 2021. [DOI: 10.3390/separations8070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some chemical substances have the potential to enter the coastal and marine environment and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them, their fate and effects are poorly understood as well as their use still unregulated. Finding effective and sustainable strategies for the identification of these emerging and/or anthropogenic contaminants that might cause polluting effects in marine environments to mitigate their adverse effects, is of utmost importance and a great challenge for managers, regulators and researchers. In this review we will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals and personal care products. Emerging microextraction techniques and high-resolution analytical platforms used in isolation, identification and quantification of ECs will be also reviewed.
Collapse
|