1
|
Martínez-Alarcón D, Reisser CMO, Solé M, Lignot JH, Rivera-Ingraham G. Transcriptomic and biochemical analysis of Procambarus clarkii upon exposure to pesticides: Population-specific responses as a sign of pollutant resistance? ENVIRONMENTAL RESEARCH 2025; 270:120963. [PMID: 39884542 DOI: 10.1016/j.envres.2025.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
The effects that anthropogenic stressors may have on modulating species' plasticity has been relatively unexplored; however, it represents a scientific frontier that may offer insights into their ability to colonize new habitats. To explore the advantage that inhabiting polluted environments may offer to invasive species, we selected the crayfish Procambarus clarkii, a species that can colonize and thrive in a wide range of aquatic environments, including heavily polluted ones. Here, we studied the molecular and physiological responses of crayfish when experimentally exposed to a pesticide mix of azoxystrobin and oxadiazon at sublethal concentrations. We compared these responses in three isolated crayfish populations in Southern France that are established in areas with different pollution levels: i) Camargue, seasonally affected by pesticide pollution; ii) Bages-Sigean, impacted all year-round by domestic effluents and; iii) Salagou, a more pristine site. Gene expression analyses revealed that the response to the pesticide mix was the strongest in the Camargue crayfish. In this population, a total of 88 differentially expressed genes (DEGs) were identified in hepatopancreas and 78 in gills between exposed and control laboratory groups. Among genes that were differentially expressed and successfully annotated, those involved in stress response, DNA repair, immune response, and translation and transcription processes stand out. Interestingly, the hepatopancreas responded mainly with up-regulation, while the gills showed down-regulation. Our results demonstrate population-specific responses to pesticide stress in populations with different life-history of exposure to pollutants. The high regulation of the aforementioned mechanisms indicates that they play a crucial role in the adaptation of this invasive species to polluted environments.
Collapse
Affiliation(s)
| | - Celine M O Reisser
- UMR 9190-MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Montserrat Solé
- Departament de Recursos Marins Renovables, Institut de Ciencies del Mar (ICM-CSIC), 08003, Barcelona, Spain
| | - Jehan-Hervé Lignot
- UMR 9190-MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Georgina Rivera-Ingraham
- UMR 9190-MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Australian Rivers Institute, Griffith University, Gold Coast Campus, 4215, Southport, QLD, Australia.
| |
Collapse
|
2
|
Abdelraouf AMN, Al-Hazmi NE, Naguib DM. Streptomyces griseus Versus Trichoderma viride Chitinase as an Anti-inflammatory and Antifungal Agent Against Human Pathogenic Fungi. Indian J Microbiol 2024; 64:1863-1869. [PMID: 39678951 PMCID: PMC11645452 DOI: 10.1007/s12088-024-01253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 12/17/2024] Open
Abstract
Fungal pathogens cause over a billion human infections annually, leading to more than 1.6 million deaths each year. The scarcity of available antifungal drugs intensifies the public health threat posed by human pathogenic fungal infections. Therefore there is a critical demand for novel, safe, and effective antifungal agents. Although chitinases are established as effective antifungal agents against phytopathogenic fungi, research on their activity against human pathogenic fungi is limited. The present study seeks to investigate the anti-inflammatory and antifungal activity of bacterial and fungal chitinase against human pathogenic fungi. The antifungal efficacy of bacterial chitinase from Streptomyces griseus, fungal chitinase from Trichoderma viride, and a combination of both was determined by calculating the inhibition percentage in fungal growth, indicated by the reduction in the dry mass of the fungi. Additionally, the anti-inflammatory activity of these chitinases was assessed by measuring the inhibition of albumin denaturation. Results revealed that chitinases exhibited greater antifungal activity compared to the standard. Notably, bacterial chitinase demonstrated higher effectiveness than fungal chitinase against Aspergillus fumigatus, while the bacterial and fungal chitinase had similar effects against different Cryptococcus neoformans and Candida species. The combination of bacterial and fungal chitinase demonstrated the highest antifungal activity against all tested fungi. Furthermore, the anti-inflammatory activity indicated that chitinases prevented 98% of albumin denaturation, marking the first study reporting the anti-inflammatory role of chitinases in preventing albumin denaturation. Additional in-vivo studies are necessary to explore the antifungal activity of chitinases against human pathogenic fungi and investigate the anti-inflammatory mechanisms of chitinase.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Abdelraouf
- Soil and Water Research Department, Atomic Energy Authority, Nuclear Research Center, Abou-Zaabl, 13759 Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University, Al-Mikhwah, Saudi Arabia
| | - Nawal E. Al-Hazmi
- Division of Biology (Microbiology), Department of Chemistry, University College of Qunfudah, Umm Al-Qura University, Qunfudah, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University, Al-Mikhwah, Saudi Arabia
| |
Collapse
|
3
|
Chen B, Xu X, Chen Y, Xie H, Zhang T, Mao X. Red Swamp Crayfish ( Procambarus clarkii) as a Growing Food Source: Opportunities and Challenges in Comprehensive Research and Utilization. Foods 2024; 13:3780. [PMID: 39682852 DOI: 10.3390/foods13233780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The red swamp crayfish (Procambarus clarkii) was introduced from Japan to China in the 1920s. Crayfish are now widely distributed in almost all types of freshwater wetlands, including rice fields, ditches, swamps, lakes, and ponds in most provinces of China, owing to their multi-directional movement, rapid growth, adaptability to the environment, and relatively high fecundity. The delectable taste and high nutritional value of crayfish have made them popular among consumers, leading to the significant development of red swamp crayfish farming in the last two decades. Currently, it represents the largest proportion of commercially farmed freshwater crustaceans in China and has become an integral component of China's aquatic economy. Crayfish are highly valued for their edibility and for their by-products, which have various important uses. This review discusses nutrient composition, active ingredients, safety evaluation, processing and preservation, and comprehensive utilization of crayfish by-products to explore and organize the existing knowledge about crayfish and to promote the growth of the crayfish industry. This comprehensive review aims to provide a basis for the optimal utilization and sustainable development of crayfish resources worldwide.
Collapse
Affiliation(s)
- Bimin Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yinji Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Hongkai Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Lu S, Hu Y, Du L, Xu Y, Xu Z, Wan J, Lin H, Zheng Y, Liu G, Li X. Eukaryotic expression of chitinase from dark sleeper (Odontobutis potamophila) and its effects on growth and immunity. Int J Biol Macromol 2024; 282:137196. [PMID: 39505191 DOI: 10.1016/j.ijbiomac.2024.137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Chitinase, an enzyme that hydrolyzes β-1,4-glycosidic bonds to degrade chitin, is essential for the digestion of chitin in fish. In this study, the chitinase OpCht from Odontobutis potamophila was expressed in Pichia pastoris, and its enzymatic properties and functional effects were evaluated. The findings revealed that OpCht exhibited optimal activity at pH 6.0 and 50 °C, with stability in the pH range of 4-8 and temperatures from 4 to 40 °C. K+, Na+, Ca2+, Mg2+, Mn2+, Hg2+, and Al3+ showed varying degrees of activation on the enzyme. At the end of the 8-week trial, the addition of OpCht significantly increased the height of intestinal villi and the thickness of the muscular layer, leading to significantly weight in the treated groups. The alleviation of intestinal inflammation also resulted in an increased survival rate (SR) of O. potamophila. High concentration treatment groups (2, 4 μg/g) showed significantly elevated digestive enzyme activities, as well as increased antioxidant enzyme activities and immune parameters. These results demonstrate that the P. pastoris expression system has successfully produced the chitinase OpCht from O. potamophila, and the addition of a certain concentration of OpCht can promote fish growth and enhance immune functions, offering a promising enzyme preparation for the aquaculture industry.
Collapse
Affiliation(s)
- Siyu Lu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuning Hu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Lin Du
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jinjuan Wan
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hai Lin
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - You Zheng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Guoxing Liu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China.
| | - Xuguang Li
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
5
|
Bian DD, Liu X, Zhang X, Zhang GY, Wu RC, Shi YX, Zhu XR, Zhang DZ, Liu QN, Tang BP, Zhu BJ. Correlative analysis of transcriptome and 16S rDNA in Procambarus clarkii reveals key signaling pathways are involved in Chlorantraniliprole stress response by phosphoinositide 3-kinase (PI3K). Int J Biol Macromol 2024; 280:135966. [PMID: 39326603 DOI: 10.1016/j.ijbiomac.2024.135966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Chlorantraniliprole (CAP), a diamide insecticide, is extensively used in agricultural production. With the increasing adoption of the rice-crayfish integrated farming model, pesticide application has become more frequent. However, the potential risk of CAP to crayfish (Procambarus clarkii) remains unclear. In this study, crayfish were exposed to 30, 60, 90 mg/L CAP for 96 h. As CAP exposure time and concentration increased, crayfish survival rates and total hemocyte counts (THC) decreased. Biochemical indicators revealed that CAP exposure induced oxidative stress and immunosuppression in crayfish, leading to metabolic disorders and reduced ATP content. Additionally, pathological analysis and 16S rDNA sequencing demonstrated that CAP exposure compromised the intestinal barrier of crayfish, altered the intestinal microbial community structure, and caused apoptosis. Differential gene expression analysis showed that CAP exposure significantly suppressed the expression of genes related to immune and energy metabolism pathways, resulting in immune dysfunction and insufficient energy supply, while activating the PI3K/AKT/mTOR signaling pathway. PI3K knockdown reduced antioxidant and digestive activities, increased the expression of proinflammatory and apoptosis genes, and exacerbated CAP-induced intestinal toxicity. This study is the first to explore the characterization and function of PI3K in crustaceans, providing new insights for further research on crustacean antioxidants and defense mechanisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Geng-Yu Zhang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Ren-Chao Wu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bao-Jian Zhu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
6
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Baliarsingh S, Patnaik BB, Mohanty J. Isolation and characterization of a lectin-like chitinase from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii. Biochimie 2024; 221:125-136. [PMID: 37769935 DOI: 10.1016/j.biochi.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
A lectin was isolated from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii by affinity chromatography using mucin-sepharose matrix. The purity of the isolated lectin was confirmed in native gradient PAGE that showed a single protein band of ∼37.9 kDa. In SDS-PAGE also one band of ∼43.3 kDa molecular weight was observed that indicated the protein to be a monomer. The band from the SDS-PAGE gel was identified through mass spectrometry as chitinase 1. The purified chitinase (50 μg/ml) hemagglutinated rabbit RBCs and, mucin and glucose inhibited hemagglutination with minimum concentrations of 0.1 mg/ml and 100 mM, respectively. Bacterial agglutination with Gram -ve Vibrio harveyi, Aeromonas sobria and Escherichia coli was also observed by this protein. Thus, chitinase 1 showed lectin-like properties besides its chitin hydrolytic activity. In western blot with hepatopancreas sample, rabbit antiserum against chitinase 1 cross-reacted to two additional proteins namely, chitinase 1C and obstructor E (a chitin-binding protein, CBP), besides its specific reactivity. An indirect ELISA was developed with the antiserum to quantify chitinases/CBP in hepatopancreas and serum samples of M. rosenbergii. The assay was used in samples from juvenile prawns following V. harveyi challenge. At 72 h post-challenge, significantly higher levels of chitinases/CBP were quantified in the hepatopancreas of the challenged group (1.8 ± 0.2 mg/g tissue) compared to the control (1.2 ± 0.1 mg/g tissue). This study suggests that the chitinase 1 protein with lectin-like properties is possibly induced at the protein level and can be putatively involved in the innate immune response of M. rosenbergii.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Snigdha Baliarsingh
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India; Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, 31538, South Korea; Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
7
|
Qi M, Chu S, Wang W, Fu X, Jiang C, Zhang L, Ali MH, Lu Y, Jia M, Ubul D, Tang H, Li J, Liu M. Safflower polysaccharide ameliorates acute ulcerative colitis by regulating STAT3/NF-κB signaling pathways and repairing intestinal barrier function. Biomed Pharmacother 2024; 174:116553. [PMID: 38593703 DOI: 10.1016/j.biopha.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.
Collapse
Affiliation(s)
- Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Chao Jiang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Yating Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jia
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Dilraba Ubul
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Jian Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China; State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
8
|
Yang H, Mo A, Yi L, Wang J, He X, Yuan Y. Selenium attenuated food borne cadmium-induced intestinal inflammation in red swamp crayfish (Procambarus clarkii) via regulating PI3K/Akt/NF-κB pathway. CHEMOSPHERE 2024; 349:140814. [PMID: 38040256 DOI: 10.1016/j.chemosphere.2023.140814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Selenium (Se), an indispensable micronutrient for living organisms, has been extensively studied for its heavy metal-detoxifying properties in diverse biological systems and tissues. Nevertheless, it is not entirely certain whether Se can effectively protect against Cadmium (Cd)-induced gut inflammation, especially in aquatic animals. In this study, we employed various approaches, including transcriptome profiling, histological examinations, assessment of antioxidant enzyme activities, and analysis of gut microbiota composition to investigate the effects on crayfish growth and intestinal health after exposure to dietary Cd (15 mg kg-1 diet) and Se (15 mg kg-1 diet) individually or in combination for 8 weeks. The results revealed that dietary Cd exposure resulted in reduced body weight and survival rates, along with an increased occurrence of intestinal inflammation. Nevertheless, Se supplementation proved effective in mitigating the adverse effects of Cd on growth and gut health. Se exhibited a remarkable ability to counteract the disruption of gut antioxidant abilities induced by dietary Cd, as evidenced by the observed increases in ROS and MDA contents, decrease in GSH levels, and inhibition of antioxidative enzyme activities. At the concentration of 6 mg kg-1 in the diet, Se was found beneficial for maintaining gut microbiota richness and diversity. Among them, Flavobacterium, Thermomonas, and Chloronema displayed a weak negative correlation with the rate of gut inflammation. Meanwhile, the levels of short chain fatty acids (SCFAs), including acetic acid (AA) and butanoic acid (BA), showed a significant increase in the Se-Cd group compared to the Cd-only group. Furthermore, transcriptome analysis exhibited significant responses of the PI3K/Akt and NF-κB pathways following crayfish exposure to dietary Se and Cd, either separately or in combination. In short, this study provides a new evidence regarding the molecular mechanisms through which Se could regulate the PI3K/Akt and NF-κB pathways, either directly or indirectly via ROS and SCFAs, thereby alleviating Cd-induced gut inflammation in crayfish.
Collapse
Affiliation(s)
- Huijun Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Linyuan Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Li G, Li D, Rao H, Liu X. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150760. [PMID: 34619195 DOI: 10.1016/j.scitotenv.2021.150760] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Metribuzin and tebuconazole have been widely used in agriculture for several decades. Apart from endocrine disruption, little is known about their toxicological effects on organisms without thyroid organs, at the transcriptional level. To explore this toxicity, model earthworm species Eisenia fetida, hatched from the same cocoon and cultured under identical environmental conditions, were independently exposed to the two chemicals at non-lethal concentrations in OECD artificial soil for 48 h after exposure. RNA-seq technology was used to analyze and compare the gene expression profiles of earthworms exposed to metribuzin and tebuconazole. The functions of differentially expressed genes and their standard response patterns of upregulated and downregulated expression for both pesticides were verified. The findings demonstrated that metribuzin and tebuconazole are both potentially toxic to earthworms. Toxicological effects mainly involved the nervous system, immune system, and tumors, at the transcriptional level, as well as the induction of cytochrome P450-dependent detoxification and oxidative stress. In addition, the mitogen-activated protein kinase kinase kinase gene was identified as a biomarker, and the mitogen-activated protein kinase signaling pathway was verified to be a part of the adverse outcome pathway of metribuzin and tebuconazole and their structural analogs.
Collapse
Affiliation(s)
- Gang Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Dongxue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Huixian Rao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China
| | - Xinjǚ Liu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; Key Laboratory for Zhejiang Pesticide Residue Detection and Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 31002, China.
| |
Collapse
|
11
|
Park BJ, Yoon YB, Lee DH, Shin C, Juakali L, Cho SJ, Park SC. Transcriptional upregulation of multiple earthworm chitinase genes following bacterial challenge suggests their implications in innate immunity. Genes Genomics 2021; 43:1497-1502. [PMID: 34762288 DOI: 10.1007/s13258-021-01183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chitinase is a multi-functional enzyme that catalyzes the hydrolysis of β-1,4-linkages between N-acetylglucosamines (GlcNAc) in chitin. Recent studies imply that earthworm chitinase is implicated in self-defense immunity against chitin-containing pathogens. However, a direct relationship of earthworm chitinase with innate immunity has not yet been established. OBJECTIVE In this study, earthworm (Eisenia andrei) chitinase expression was examined following bacterial challenge by Bacillus subtilis. METHODS RNA sequencing (RNA-seq) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to quantitatively evaluate mRNA expression changes in response to bacterial stimulation. RESULTS Multiple chitinase-related mRNAs were found to be upregulated, among which EaChi3, EaChi4, and EaChi2 were upregulated by approximately eightfold, eightfold, and 2.5-fold, respectively. This strongly suggested that earthworm chitinases may act as inducible humoral effectors in earthworm innate immunity. The primary structures of all three chitinases contained an N-terminal glycol_18 domain with two chitin-binding and chitin-catalyzing domains, and a C-terminal proline, glycine, serine, threonine (PGST)-rich domain. In addition, EaChi2 had a chitin-binding peritrophin-A domain at the end of the C-terminus with 5 cysteine residues possibly contributing two intradomain disulfide bonds. Multiple sequence alignment of the catalytic domain centers of glycol_18 domain displayed highly conserved chitin-binding and chitin-catalyzing domains in which three essential amino acid residues (D, D, E) for catalyzing activity are well conserved except EaChi4. The critical glutamic acid (E) residue was substituted for glutamine (Q) in EaChi4 indicating that it is devoid of catalytic activity. CONCLUSIONS To our knowledge, this is the first report providing direct evidence that multiple earthworm chitinases are bacteria-responsive, strongly suggesting that earthworm chitinases are inducible humoral effectors in earthworm innate immunity. In addition, our results possibly suggest that earthworm EaChi4 may function as a pattern recognition molecule modulating the downstream immune pathway.
Collapse
Affiliation(s)
- Beom Jun Park
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoo Bin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chuog Shin
- Department of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Louis Juakali
- Department EGRA, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk, 28644, Republic of Korea.
| | - Soon Cheol Park
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Xu Z, Gao T, Xu Y, Li X, Li J, Lin H, Yan W, Pan J, Tang J. A chromosome-level reference genome of red swamp crayfish Procambarus clarkii provides insights into the gene families regarding growth or development in crustaceans. Genomics 2021; 113:3274-3284. [PMID: 34303807 DOI: 10.1016/j.ygeno.2021.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Red swamp crayfish Procambarus clarkii is an ecologically and economically important crustacean species. Here, based on a de novo assembly strategy combining PacBio with Hi-C sequencing, we presented a high quality chromosome-level P. clarkii genome. The assembled genome is 2.75 Gb in size with a contig N50 of 216.75 kb. Transposable elements (TEs) make up the largest fraction of the genome (~79.61%), and LINEs comprise the majority of the TEs. Frequent molting and rapid growth of the red swamp crayfish may be explained by the expansion of multiple gene families regarding growth or development. Phylogenetic analysis revealed that P. clarkii diverged from Portunus trituberculatus at 278-407 million years ago (Mya). PSMC analysis identified multiple bottleneck events of the P. clarkii population between 2 kaBP to 14 kaBP. The obtained P. clarkii genome should not only facilitate us understanding the development and evolution of the crayfish species, but also contribute to the genetic improvement in future breeding selections.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China.
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China
| | - Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Weihui Yan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China
| | - Jianqing Tang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key laboratory for Conservation and Utilization of freshwater Fisheries Germplasm Resources, Nanjing 210017, China.
| |
Collapse
|