1
|
Castro PL, Barac F, Hansen TJ, Fjelldal PG, Hordvik I, Bjørgen H, Koppang EO. The Distribution of IgT mRNA + Cells in the Gut of the Atlantic Salmon ( Salmo salar L.). Animals (Basel) 2023; 13:3191. [PMID: 37893915 PMCID: PMC10603744 DOI: 10.3390/ani13203191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The newly discovered IgT+ B cell is thought to play a dominant role in mucosal immunity, but limited studies have examined its distribution in fish species, hindering our understanding of its function. This study investigated IgT and poly Ig receptor (pIgR) mRNA+ cell distribution in Atlantic salmon (Salmo salar) gut using RNAscope in situ hybridization (ISH) and assessed the effects of vaccination. The pyloric caeca, mid-intestine (first and second parts), and posterior segment in two weight stages (Group 1: avg. 153 g, Group 2: avg. 1717 g) were examined in both vaccinated and unvaccinated fish. ISH revealed more IgT mRNA+ cells in the second part of the midgut compared to other intestinal segments, as well as a higher number of positive cells in Group 2 (older fish). In line with previous findings, intraperitoneal vaccination had no significant impact on the number of IgT+ transcripts. IgT mRNA+ cells were found mostly in the lamina propria and near capillaries, while pIgR was registered in both the lamina propria and mucosa. Interestingly, vaccinated fish presented adhesions and granulomatous tissue in the peritoneum, with both IgT and pIgR mRNA+ cells. Taken together, these results suggest that the distribution of IgT mRNA+ cells in the intestine of Atlantic salmon is region-specific and is not affected by intraperitoneal vaccination but varies with fish age.
Collapse
Affiliation(s)
- Pedro Luis Castro
- GIA-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35001 Telde, Spain
| | - Fran Barac
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences, 1433 Ås, Norway; (F.B.); (H.B.); (E.O.K.)
| | - Tom Johnny Hansen
- Matre Research Station, Institute of Marine Research, 5984 Matredal, Norway; (T.J.H.); (P.G.F.)
| | - Per Gunnar Fjelldal
- Matre Research Station, Institute of Marine Research, 5984 Matredal, Norway; (T.J.H.); (P.G.F.)
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, 5007 Bergen, Norway;
| | - Håvard Bjørgen
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences, 1433 Ås, Norway; (F.B.); (H.B.); (E.O.K.)
| | - Erling Olaf Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences, 1433 Ås, Norway; (F.B.); (H.B.); (E.O.K.)
| |
Collapse
|
2
|
Li K, Wei X, Jiao X, Deng W, Li J, Liang W, Zhang Y, Yang J. Glutamine Metabolism Underlies the Functional Similarity of T Cells between Nile Tilapia and Tetrapod. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201164. [PMID: 36890649 PMCID: PMC10131875 DOI: 10.1002/advs.202201164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
As the lowest organisms possessing T cells, fish are instrumental for understanding T cell evolution and immune defense in early vertebrates. This study established in Nile tilapia models suggests that T cells play a critical role in resisting Edwardsiella piscicida infection via cytotoxicity and are essential for IgM+ B cell response. CD3 and CD28 monoclonal antibody crosslinking reveals that full activation of tilapia T cells requires the first and secondary signals, while Ca2+ -NFAT, MAPK/ERK, NF-κB, and mTORC1 pathways and IgM+ B cells collectively regulate T cell activation. Thus, despite the large evolutionary distance, tilapia and mammals such as mice and humans exhibit similar T cell functions. Furthermore, it is speculated that transcriptional networks and metabolic reprogramming, especially c-Myc-mediated glutamine metabolism triggered by mTORC1 and MAPK/ERK pathways, underlie the functional similarity of T cells between tilapia and mammals. Notably, tilapia, frogs, chickens, and mice utilize the same mechanisms to facilitate glutaminolysis-regulated T cell responses, and restoration of the glutaminolysis pathway using tilapia components rescues the immunodeficiency of human Jurkat T cells. Thus, this study provides a comprehensive picture of T cell immunity in tilapia, sheds novel perspectives for understanding T cell evolution, and offers potential avenues for intervening in human immunodeficiency.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wenhai Deng
- School of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal ResearchSchool of Life SciencesEast China Normal UniversityShanghai200241China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266237China
| |
Collapse
|
3
|
Yin X, Li X, Mu L, Bai H, Yang Y, Chen N, Wu L, Fu S, Li J, Ying W, Ye J. Affinity-Driven Site-Specific High Mannose Modification Determines the Structural Polymerization and Function of Tetrameric IgM in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:593-605. [PMID: 35868636 DOI: 10.4049/jimmunol.2100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 10/17/2023]
Abstract
Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Hao Bai
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI; and
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|