1
|
Polyakov NE, Mastova AV, Kruppa AI, Asfandiarov NL, Pshenichnyuk SA. Glycyrrhetinic acid interaction with solvated and free electrons studied by the CIDNP and dissociative electron attachment techniques. J Chem Phys 2024; 161:035102. [PMID: 39007395 DOI: 10.1063/5.0214342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.
Collapse
Affiliation(s)
- Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Anna V Mastova
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Alexander I Kruppa
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Nail L Asfandiarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| |
Collapse
|
2
|
Halder J, Dubey D, Kanti Rajwar T, Mishra A, Satpathy B, Sahoo D, Prasad Yadav N, Kumar Rai V, Pradhan D, Manoharadas S, Kar B, Ghosh G, Rath G. Local delivery of methotrexate/glycyrrhizin-loaded hyaluronic acid nanofiber for the management of oral cancer. Int J Pharm 2024; 660:124311. [PMID: 38848798 DOI: 10.1016/j.ijpharm.2024.124311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The challenges in treating oral cancer include the limited effectiveness and systemic side effects of conventional chemotherapy and radiation therapy. Hyaluronic acid (HA) based Glycyrrhizin (GL) and Methotrexate (MT) loaded localized delivery systems, specifically nanofiber (NF) based platforms, were developed to address these challenges. The electrospinning method was used for the successful fabrication of a homogenous NF membrane and characterized for morphology, drug entrapment efficiency, tensile strength, and ex-vivo mucoadhesive study. Also, it was evaluated for in-vitro drug release profile, ex-vivo drug permeability, in-vitro anti-inflammatory, apoptosis assay by MTT and flow, and against specific cell lines in order to determine their potential for therapeutic use. Superior tensile breaking force (50 g), mucoadhesive strength of 153 gm/cm2, drug permeability, and releasing properties of designed NF, making them perfect requirements for oral cavity delivery. The anticancer potential of MT in the MTT assay and flow cytometry analysis was significantly increased in oral epidermal carcinoma cell (KB cell) for drug-loaded NF with 63.97 ± 1.99 % apoptosis, at 24 h. With these incorporated, GL with MT in NF had an anti-inflammatory potential, also demonstrated in-vitro and in-vivo. In the Ehrlich Ascites Carcinoma (EAC) induced mice model, the optimal formulation's shows better potential for tumor regression when comparing the developed NF formulation to the drugs. Experimental results show that by lowering mucositis-related inflammation and enhancing the effectiveness of oral cancer treatment, a developed nanofiber-based local drug delivery system offers a feasible strategy for managing oral cancer.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debasmita Dubey
- Institute of Medical Sciences and Sum Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ajit Mishra
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bibhanwita Satpathy
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debasish Sahoo
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, U.P., India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, U.P., India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451 Riyadh, Saudi Arabia
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Chen K, Qin T, Pan L, Bing X, Xi B, Xie J. Effects of glycyrrhetinic acid β on growth and virulence of Aeromonas hydrophila. Front Microbiol 2023; 14:1043838. [PMID: 36846766 PMCID: PMC9950564 DOI: 10.3389/fmicb.2023.1043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Aeromonas hydrophila is a significant pathogen to freshwater farmed animals, and antibiotics are usually used to control the bacterial septicemia caused by A. hydrophila. Due to the severe situation of development and spread of antibiotic resistance, there are stricter restrictions on antibiotics used in aquaculture. To evaluate the feasibility of glycyrrhetinic acid β (GA) as an alternative therapy against bacterial infection, in this study, an A. hydrophila isolated from diseased fish is used to test the antibacterial, anti-virulence activity and therapeutic effect of GA in vitro and in vivo, respectively. Results showed that GA did not affect the growth of A. hydrophila in vitro, while it could down-regulate (p < 0.05) the mRNA expression of the hemolysis-related genes hly and aerA, and significantly inhibited (p < 0.05) hemolytic activity of A. hydrophila. In addition, in vivo test showed that oral administration of GA was ineffective in controlling acute infections caused by A. hydrophila. In conclusion, these findings suggested that GA was a potential anti-virulence candidate against A. hydrophila, but the application of GA for the prevention and treatment of A. hydrophila-related diseases was still a long way.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Qin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Liangkun Pan
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xuwen Bing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | | | | |
Collapse
|
4
|
Wang Y, Xu W, Zhang J, Liu J, Wang Z, Liu Y, Mai K, Ai Q. Effects of Glycyrrhizin (GL) Supplementation on Survival, Growth Performance, Expression of Feeding-Related Genes, Activities of Digestive Enzymes, Antioxidant Capacity, and Expression of Inflammatory Factors in Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:5508120. [PMID: 36860459 PMCID: PMC9973149 DOI: 10.1155/2022/5508120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
A 30-day feeding trial was conducted to determine the effects of dietary glycyrrhizin (GL) on survival, growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, and expression of inflammatory factors of large yellow croaker larvae with an initial weight of 3.78 ± 0.27 mg. Four 53.80% crude protein and 16.40% crude lipid diets were formulated with supplementation of 0%, 0.005%, 0.01%, and 0.02% GL, respectively. Results indicated that larvae fed diets with GL had higher survival rate and specific growth rate than the control (P < 0.05). Compared with the control, the mRNA expression of orexigenic factor genes including neuropeptide Y (npy) and agouti-related protein (agrp) were significantly increased in larvae fed the diet with 0.005% GL, while the mRNA expression of anorexigenic factor genes including thyrotropin-releasing hormone (trh), cocaine and amphetamine regulated transcript (cart), and leptin receptor (lepr) were significantly decreased in larvae fed the diet with 0.005% GL (P < 0.05). The trypsin activity in larvae fed the diet with 0.005% GL was significantly higher than the control (P < 0.05). The alkaline phosphatase (AKP) activity in larvae fed the diet with 0.01% GL was significantly higher than the control (P < 0.05). A clear increase of total glutathione (T-GSH) content, activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was observed in larvae fed the diet with 0.01% GL compared with the control (P < 0.05). Moreover, the mRNA expression of interleukin-1β (il-1β) and interleukin-6 (il-6) (proinflammatory genes) in larvae fed the diet with 0.02% GL were significantly lower than the control (P < 0.05). In conclusion, the supplementation of 0.005% -0.01% GL could enhance the expression of orexigenic factor genes, activities of digestive enzymes and antioxidant capacity, ultimately improving the survival, and growth performance of large yellow croaker larvae.
Collapse
Affiliation(s)
- Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Zarshenas MM. Evaluation of metabolites in Iranian Licorice accessions under salinity stress and Azotobacter sp. inoculation. Sci Rep 2022; 12:15837. [PMID: 36151202 PMCID: PMC9508240 DOI: 10.1038/s41598-022-20366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Licorice (Glycyrrhiza glabra L.) is an industrial medicinal plant that is potentially threatened by extinction. In this study, the effects of salinity (0 and 200 mM sodium chloride (NaCl)) and Azotobacter inoculation were evaluated on 16 licorice accessions. The results showed that salinity significantly reduced the fresh and dry biomass (FW and DW, respectively) of roots, compared to plants of the control group (a decrease of 15.92% and 17.26%, respectively). As a result of bacterial inoculation, the total sugar content of roots increased by 21.56% when salinity was applied, but increased by 14.01% without salinity. Salinity stress increased the content of glycyrrhizic acid (GA), phenols, and flavonoids in licorice roots by 104.6%, 117.2%, and 56.3%, respectively. Integrated bacterial inoculation and salt stress significantly increased the GA content in the accessions. Bajgah and Sepidan accessions had the highest GA contents (96.26 and 83.17 mg/g DW, respectively), while Eghlid accession had the lowest (41.98 mg/g DW). With the bacterial application, the maximum amounts of glabridin were obtained in Kashmar and Kermanshah accessions (2.04 and 1.98 mg/g DW, respectively). Bajgah and Kashmar accessions had higher amounts of rutin in their aerial parts (6.11 and 9.48 mg/g DW, respectively) when their roots were uninoculated. In conclusion, these results can assist in selecting promising licorice accessions for cultivation in harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.,Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran
| | - Mohammad Mehdi Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Traditional Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Ageeva AA, Kruppa AI, Magin IM, Babenko SV, Leshina TV, Polyakov NE. New Aspects of the Antioxidant Activity of Glycyrrhizin Revealed by the CIDNP Technique. Antioxidants (Basel) 2022; 11:1591. [PMID: 36009310 PMCID: PMC9405345 DOI: 10.3390/antiox11081591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Electron transfer plays a crucial role in ROS generation in living systems. Molecular oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms. Two main mechanisms of antioxidant defense by exogenous antioxidants are usually considered. The first is the inhibition of ROS generation, and the second is the trapping of free radicals. In the present study, we have elucidated both these mechanisms of antioxidant activity of glycyrrhizin (GL), the main active component of licorice root, using the chemically induced dynamic nuclear polarization (CIDNP) technique. First, it was shown that GL is capable of capturing a solvated electron, thereby preventing its capture by molecular oxygen. Second, we studied the effect of glycyrrhizin on the behavior of free radicals generated by UV irradiation of xenobiotic, NSAID-naproxen in solution. The structure of the glycyrrhizin paramagnetic intermediates formed after the capture of a solvated electron was established from a photo-CIDNP study of the model system-the dianion of 5-sulfosalicylic acid and DFT calculations.
Collapse
Affiliation(s)
- Aleksandra A. Ageeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Alexander I. Kruppa
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Ilya M. Magin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Simon V. Babenko
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
- International Tomography Center, 630090 Novosibirsk, Russia
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Nikolay E. Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|