1
|
Liu X, Wang W, Zhao H, Wang Y, Jiang L, Zhang E, Feng Y, Wang X, Qu J, Yang J, Li Z. Transcriptome profiling of triploid Crassostrea gigas gills indicates the host immune mechanism against bacterial infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101392. [PMID: 39647257 DOI: 10.1016/j.cbd.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
As an important member of global aquaculture, oysters (Crassostrea gigas) have significant economic value. With the development of commercial aquaculture, the frequent occurrence of diseases caused by Vibrio alginolyticus has become a hindrance to high-density aquaculture. Gill tissue, as an important component of immune system of the oysters, plays the key point in the face of invasion by foreign substances. Compared to the diploid oyster, the triploid oyster presents a higher growth rate and lower growth investment, making it a more ideal model for studying oyster immune defense. In this study, triploid oysters were as the research subject, and gill tissues attacked by V. alginolyticus were sequenced. By analyzing samples from different time points, 1746 DEGs were obtained. The KEGG and GO functional enrichment analysis showed that gill tissues mainly participate in immune function through the PIK3-Akt signaling pathway and the MAPK signaling pathway. The protein interaction network revealed three genes (CASP8, CASP9 and PIK3CA) that play core roles in immune defense by analyzing the interaction relationship between genes. Finally, qRT-PCR verified the expression of key genes. This study provides a more effective scientific basis for disease prevention and control of oysters and other bivalve shellfish, and helps to promote the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Haitao Zhao
- Dongying Marine Development Research Institute, Dongying 257091, China
| | - Yongjie Wang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Liming Jiang
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Enshuo Zhang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jianmin Yang
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China
| | - Zan Li
- Shandong Engineering Research Center of Oyster Germplasm Creation and Efficient Culture, Yantai 264025, China; School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. PI3K-AKT-mediated phosphorylation of Thr260 in CgCaspase-3/6/7 regulates heat-induced activation in oysters. Commun Biol 2024; 7:1459. [PMID: 39511363 PMCID: PMC11543851 DOI: 10.1038/s42003-024-07184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Cysteine-aspartic proteases (caspases) are critical drivers of apoptosis, exhibiting expansion and domain shuffling in mollusks. However, the functions and regulatory mechanisms of these caspases remain unclear. In this study, we identified a group of Caspase-3/6/7 in Bivalvia and Gastropoda with a long inter-subunit linker (IL) that inhibits cleavage activation. Within this region, we found that conserved phosphorylation at Thr260 in oysters, mediated by the PI3K-AKT pathway, suppresses heat-induced activation. This mechanism is involved in divergent temperature adaptation between two allopatric congeneric oyster species, the relatively cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. Our study elucidates the role of these effector caspase members and their long IL in bivalves, revealing that the PI3K-AKT pathway phosphorylates Thr260 on CgCASP3/6/7's linker to inhibit heat-induced activation. These findings provide insights into the evolution and function of apoptotic regulatory mechanisms in bivalves.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
3
|
Jemec Kokalj A, Leonardi A, Perc V, Dolar A, Drobne D, Križaj I. Proteomics of the haemolymph of the terrestrial crustacean Porcellio scaber reveals components of its innate immunity under baseline conditions. Biochimie 2023; 213:12-21. [PMID: 37187404 DOI: 10.1016/j.biochi.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The terrestrial crustacean Porcellio scaber is an established test organism in environmental research. We analysed the haemolymph proteome of P. scaber using a classical proteomic approach based on one-dimensional gel electrophoresis and tandem mass spectrometry. Using a publicly available protein database and our P. scaber transcriptome data, we have identified 76 proteins involved in cytoskeleton formation, protein degradation, vesicular transport, genetic information processing, detoxification, carbohydrate and lipid metabolism reflecting haemocyte metabolic activity, active intracellular transport, and intercellular communication. Compared with the data reported for other crustaceans, 28 of these P. scaber proteins have been linked to its immunity, among them hemocyanin, α-2-macroglobulin, phenoloxidase 3, superoxide dismutase, glutathione S-transferase, haemolymph clottable protein, and histones H4 and H2B. Our results thus provide a firm base for studying the innate immune response of P. scaber at the level of the haemolymph proteome. This knowledge is of particular importance in ecotoxicity studies with various environmental stressors where understanding physiological changes is important to reveal possible modes of action.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Valentina Perc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
4
|
Hossen S, Hanif MA, Kho KH. Glutathione reductase, a biomarker of pollutant and stress in Pacific abalone. MARINE POLLUTION BULLETIN 2023; 192:115139. [PMID: 37301005 DOI: 10.1016/j.marpolbul.2023.115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Abalone are frequently exposed to several environmental factors including heavy metal toxicity, thermal stress, H2O2-stress, starvation, viral and bacterial infection that can induce oxidative stress. Glutathione reductase is a vital enzyme in the antioxidant defense system that catalyzes the reduction of oxidized glutathione to reduced glutathione. The present study aimed to identify and localize glutathione reductase in Pacific abalone (Hdh-GR) and assess its potential role in stress physiology, heavy metal toxicity, immune response, gonadal development, and metamorphosis. The mRNA expression of Hdh-GR was upregulated in response to thermal stress, starvation, H2O2-stress, and cadmium-exposed toxicity. The induced mRNA expression was also quantified in immune-challenged abalone. Moreover, the Hdh-GR expression was significantly higher during metamorphosis. The Hdh-GR mRNA expression showed an inverse relationship with ROS production in heat stressed Pacific abalone. These results suggest that Hdh-GR has central role in the stress physiology, immune response, gonadal development, and metamorphosis of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
5
|
Shen Y, Gan Y, Xiao Q, Huang Z, Liu J, Gong S, Wang Y, Yu W, Luo X, Ke C, You W. Divergent Carry-Over Effects of Hypoxia during the Early Development of Abalone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17836-17848. [PMID: 36479946 DOI: 10.1021/acs.est.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
After being exposed to environmental stimuli during early developmental stages, some organisms may gain or weaken physiological regulating abilities, which would have long-lasting effects on their performance. Environmental hypoxia events can have significant effects on marine organisms, but for breeding programs and other practical applications, it is important to further explore the long-term physiological effects of early hypoxia exposure in economically significant species. In this study, the Pacific abalone Haliotis discus hannai was exposed to moderate hypoxia (∼4 mg/L) from zygote to trochophora, and the assessments of hypoxia tolerance were conducted on the grow-out stage. The results revealed that juvenile abalones exposed to hypoxia at the early development stages were more hypoxia-tolerant but with slower weight growth, a phenomenon called the trade-off between growth and survival. These phenotypic effects driven by the hypoxia exposure were explained by strong selection of genes involved in signal transduction, autophagy, apoptosis, and hormone regulation. Moreover, long non-coding RNA regulation plays an important role modulating carry-over effects by controlling DNA replication and repair, signal transduction, myocardial activity, and hormone regulation. This study revealed that the ability to create favorable phenotypic differentiation through genetic selection and/or epigenetic regulation is important for the survival and development of aquatic animals in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Junyu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Shihai Gong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| |
Collapse
|
6
|
Dolar A, Drobne D, Narat M, Jemec Kokalj A. Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120233. [PMID: 36152721 DOI: 10.1016/j.envpol.2022.120233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Tire particles pose a potential threat to terrestrial organisms because they are deposited in large quantities in the soil by tire wear abrasion, and moreover their chemical complexity poses an additional risk. Microplastics can affect several physiological processes in organisms, including those related to immunity. Therefore, we investigated the expression profile of selected immune-related genes (MnSod, Manganese Superoxide dismutase; Cat, Catalase; CypG, Cyclophilin G; Nos, Nitric oxide synthase; Ppae2a, Prophenoloxidase-activating enzyme 2a; Dscam, Down syndrome cell adhesion molecule; Myd88, Myeloid-differentiation factor 88; Toll4, Toll-like receptor 4; Mas-like, Masquerade-like protein) in haemocytes and the digestive gland hepatopancreas of terrestrial crustacean Porcellio scaber after two different time exposures (4 and 14 days) to tire particles in soil. Our results reveal for the first time the response of P. scaber after microplastic exposure at the transcriptome level. We observed time- and tissue-dependent changes in the expression of the analysed genes, with more pronounced alterations in haemocytes after 14 days of exposure. Some minor changes were also observed in hepatopancreas after 4 days. Changes in the expression profile of the analysed genes are a direct indication of a modulated immune status of the test organism, which, however, does not represent an adverse effect on the test organism under the given conditions. Nevertheless, the question remains whether the observed change in immune status affects the immunocompetence of the test organism.
Collapse
Affiliation(s)
- Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Mojca Narat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|