1
|
Zuo M, Du J, Liu Y, Chen M, Liu B, Li G, Li M, Huang S, Yu G. Deletion of the gsk-3β (Glycogen synthase kinase-3β) in zebrafish results in decreased susceptibility to Aeromonas hydrophila. Microb Pathog 2025; 198:107129. [PMID: 39557225 DOI: 10.1016/j.micpath.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Aeromonas hydrophila is a significant pathogen in the field of fish farming, resulting in substantial financial losses for the aquaculture industry. As the pathogen's resistance to commercially available antibiotics continues to rise, the identification of novel antimicrobial strategies becomes increasingly crucial. This study aims to explore the modulatory impact of gsk-3β (Glycogen synthase kinase-3β) on the intrinsic immunity against Aeromonas hydrophila in zebrafish, with the objective of uncovering a new avenue for enhancing fish antimicrobial activity through gene editing. Our investigation involved an analysis of the evolutionary patterns and protein sequence of gsk-3β, elucidating its conserved characteristics in zebrafish and fish species of economic importance. In this research, CRISPR-Cas9 technology was employed to generate a zebrafish model with a knockout of gsk-3β, resulting in a decreased resistance of zebrafish to Aeromonas hydrophila (ATCC 7966) infection. Furthermore, we conducted preliminary investigations into the potential mechanisms through which gsk-3β governs antimicrobial immunity. Our findings revealed that knockout of gsk-3β resulted in diminished activation of innate immunity, antioxidant capacity, and autophagy. Hence, the findings of this study are highly significant in improving the economic benefits of aquaculture and in effectively preventing and controlling infection caused by Aeromonas hydrophila.
Collapse
Affiliation(s)
- Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children' s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
2
|
Sun X, He Z, Yang L, Wu H, Li H. Quantitative proteomic analysis to identify potential biomarkers linked to quality traits of beef tripe from different sources. Food Chem 2024; 449:139224. [PMID: 38599111 DOI: 10.1016/j.foodchem.2024.139224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
In this work, the 4D data-independent acquisition (DIA) quantitative strategy was used for differential proteomic analysis of four beef tripe samples from different sources to explore the associations between differentially expressed proteins (DEPs) and meat quality traits. A total of 68 shared DEPs were identified in all comparison groups, which were mainly involved in phosphorylation signaling pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway, and glucuronic acid pathway. In the correlation analysis between DEPs and quality traits of beef tripe, it was found that 21 proteins were significantly associated with the quality traits in beef tripe, which could be considered as the potential biomarkers of beef tripe quality. This study has successfully uncovered the protein composition of beef tripe for the very first time, which helps to understand the key proteins and biological processes associated with the quality traits of beef tripe from different sources and improve the quality control of beef tripe.
Collapse
Affiliation(s)
- Xuelian Sun
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Li Yang
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
3
|
Liu X, Ji JX, Pang AN, Li L, Nie P, Zhang LQ, Zeng KW, Chen SN. Molecular cloning and functional analyses of C-C motif chemokine ligand 3 (CCL3) in mandarin fish Siniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109614. [PMID: 38710342 DOI: 10.1016/j.fsi.2024.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1β, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.
Collapse
Affiliation(s)
- Xiao Liu
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jia Xiang Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Qiang Zhang
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China
| | - Ke Wei Zeng
- Wuhan Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei Province, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
4
|
Lu H, Wang C, Lu W, Li X, Wang G, Dong W, Wang X, Chen H, Tan C. Antibacterial efficacy and mechanism of Cyprinus carpio chemokine-derived L-10 against multidrug-resistant Escherichia coli infections. Int J Antimicrob Agents 2024; 63:107104. [PMID: 38325720 DOI: 10.1016/j.ijantimicag.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Antimicrobial resistance has raised concerns regarding untreatable infections and poses a growing threat to public health. Rational design of new AMPs is an ideal solution to this threat. METHODS In this study, we designed, modified, and synthesised an excellent AMP, L-10, based on the original sequence of the Cyprinus carpio chemokine. All experimental data were presented as the mean ± standard deviation (SD), and the two-tailed unpaired T-test method was used to analyze all data. RESULTS L-10 exhibited excellent antibacterial activity with negligible toxicity and improved the efficacy of a broad class of antibiotics against MDR Gram-negative pathogens, including tetracycline, meropenem, levofloxacin, and rifampin. Mechanistic studies have suggested that L-10 targets the bacterial membrane components, LPS and PG, to disrupt bacterial membrane integrity, thereby exerting antibacterial effects and enhancing the efficacy of antibiotics. Moreover, in animal infection models, L-10 significantly increased the survival rate of infected animals and effectively reduced the tissue bacterial load and inflammatory factor levels. In addition to its direct antibacterial activity, L-10 dramatically reduced pulmonary pathological alterations in a mouse model of endotoxemia and suppressed LPS-induced proinflammatory cytokines in vitro and in vivo. Lastly, L-10 was successfully expressed in Pichia pastoris and maintained antimicrobial activity against MDR Gram-negative pathogens in vivo and in vitro. CONCLUSION Collectively, these results reveal the potential of L-10 as an ideal candidate against MDR bacterial infections and provide new insights into the design, development, and clinical application of AMPs.
Collapse
Affiliation(s)
- Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Say P, Nimitkul S, Bunnoy A, Na-Nakorn U, Srisapoome P. Effects of the combination of chitosan and Acinetobacter KU011TH on the growth and health performances and disease resistance of juvenile hybrid catfish (Clarias gariepinus × C. macrocephalus). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109177. [PMID: 37863127 DOI: 10.1016/j.fsi.2023.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Aquatic animal health management has become a crucial component in the goal of increasing catfish aquaculture productivity. Additionally, hybrid catfish (Clarias gariepinus × C. macrocephalus) has been promoted as a highly profitable freshwater fish in Asia. Interestingly, the crucial diseases induced by Aeromonas hydrophila have been reported to greatly impede catfish production. To overcome this challenge, the aim was to investigate the effects of the oral administration of potentially synbiotic chitosan (CH) and Acinetobacter KU011TH (AK) on the growth performance, immunological responses, and disease resistance of hybrid catfish against A. hydrophila. The control group was fed a basal diet (A), the diet fed to treatment group B was supplemented with 20 mL of CH/kg diet (B), and the experimental feed fed to groups C-D was mixed with 1 × 108, 1 × 109 and 1 × 1010 CFU/mL AK coated with 20 mL of CH/kg diet. Five different groups of juvenile hybrid catfish were continuously fed the 5 formulated feeds for 4 weeks. The results revealed that all tested feeds did not significantly enhance the hybrid catfish's average daily gain, specific growth rate, feed conversion ratio, hematocrit and erythrocyte counts. Interestingly, the application of CH and AK significantly increased the leukocyte counts, respiratory burst, lysozyme activity, alternative complement pathway hemolytic activity, and bactericidal activity (P < 0.05). The expression levels of the immune-related genes in the whole blood, head kidney, and spleen were significantly increased after CH-AK application (P < 0.05), but this finding was not observed in the liver (P > 0.05). Additionally, after 14 days of A. hydrophila peritoneal injection, the fish in group C showed significantly higher survival rates of approximately 70.0 % compared with the control fish in groups B, D, and E (52.5 %, 40.0 %, 45.0 %, and 45.0 %, respectively) (P < 0.05). These results collectively suggest that short-term application of the diet fed to group C effectively boosted the immune responses and disease resistance of hybrid catfish against A. hydrophila.
Collapse
Affiliation(s)
- Pisey Say
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Sukkrit Nimitkul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand.
| |
Collapse
|
6
|
Qiao D, Zhao Y, Pei C, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Two CcCCL19bs orchestrate an antibacterial immune response in Yellow River carp (Cyprinus carpio haematopterus). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108987. [PMID: 37541636 DOI: 10.1016/j.fsi.2023.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Chemokines are a group of chemotactic cytokines with an essential role in homeostasis as well as immunity via specific G protein-coupled receptors and atypical receptors. In our study, two Yellow River carp (Cyprinus carpio haematopterus) CCL19b genes (CcCCL19bs), tentatively named CcCCL19b_a and CcCCL19b_b, were cloned. The open reading frames (ORFs) of CcCCL19b_a and CcCCL19b_b were both 333 bp that encoded a 12 kDa protein with 110 amino acid residues. CcCCL19bs contained a signal peptide and a SCY domain with four typical conserved cysteine residues. The two CcCCL19b proteins shared high similarities with each other in both secondary and three-dimensional structure. Phylogenetic analysis showed that CcCCL19bs and other CCL19bs from tetraploid cyprinid fish were clustered into one clade. CcCCL19bs were highly expressed in gill and intestine in healthy fish, and a significant up-regulation of gene expression after Aeromonas hydrophila infection and poly(I:C) stimulation was observed in gill, liver, and head kidney. Furthermore, chemotaxis and antibacterial activity of CcCCL19bs were studied. The results indicated that recombinant CcCCL19b_a and CcCCL19b_b protein (rCcCCL19b_a and rCcCCL19b_b) exhibited significant attraction to primary head kidney leukocytes (HKLs). Meanwhile, both of rCcCCL19bs could promote the proliferation of HKLs, and significantly up-regulate the expressions of IL-1β, CCR7, and IL-6, and down-regulate the expression of IL-10 in primary HKLs. In vitro, rCcCCL19bs could bind and aggregate A. hydrophila and Staphylococcus aureus. The rCcCCL19bs exhibited significant antibacterial activity against A. hydrophila, but not S. aureus. Moreover, they inhibited the growth of A. hydrophila and S. aureus. In vivo, overexpression of CcCCL19bs contributed to the bacterial clearance. These studies suggested that CcCCL19bs orchestrate an antibacterial immune response.
Collapse
Affiliation(s)
- Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|