1
|
Xu C, Wu X, Qiu J, Ye J, Lin Q, Deng J, Zeng Y, Wang W, Zhang H, Zheng H. Genome-wide identification of gap junction gene family and their expression profiles under low temperature stress in noble scallop Chlamys nobilis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101310. [PMID: 39137603 DOI: 10.1016/j.cbd.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Gap junctions, formed by gap junction proteins (GJ), play crucial roles in cell signaling and immune responses. The structure and function of the GJ from vertebrates (called connexins) have been extensively studied. However, little is known about the proteins forming gap junctions in invertebrates (called innexins). In this study, 14 GJ genes of Chlamys nobilis were identified. GJ proteins are mainly distributed on the plasma membrane, and all proteins are hydrophilic Phylogenetic tree analysis showed that the GJ proteins in C. nobilis were distantly related to those in vertebrates but closely related to those in invertebrates. Conserved motifs analysis of these GJ proteins in C. nobilis identified to have 10 conserved motifs, similar to gap junction proteins in other bivalves. Moreover, expression profiles of CnGJ genes under chronic and acute low temperature stress were also investigated. Results showed that chronic low temperature stress had a significant effect on the expression levels of CnGJ genes, and the expression profiles of CnGJ genes showed significantly variation under acute low temperature stress. All these results indicated that CnGJ genes play important roles in environmental adaptation in scallops. The present study initially elucidated the function of gap junction genes in noble scallop C. nobilis, which provides new insights into the GJ genes in mollusks and will help us better understand their roles in environmental stress in scallops.
Collapse
Affiliation(s)
- Changping Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xuanbing Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jiale Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Qing Lin
- Shantou Fruit Tree and Aquatic Technology Promotion Station, Shantou 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Du Q, Wu Y, Liao Y, Dong R, Shui S, Benjakul S, Zhang B. Investigation of the Alternations in the Muscle Quality of Swimming Crab ( Ovalipes punctatus) during Cold-Chain Transportation Using Physicochemical and TMT-Based Quantitative Proteomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11820-11835. [PMID: 38710668 DOI: 10.1021/acs.jafc.4c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.
Collapse
Affiliation(s)
- Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315000, China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ruyi Dong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanshan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Alam P, Albalawi T. Insights into cucumber ( Cucumis sativus) genetics: Genome-wide discovery and computational analysis of the Calreticulin Domain-Encoding gene (CDEG) family. Saudi J Biol Sci 2024; 31:103959. [PMID: 38404540 PMCID: PMC10883824 DOI: 10.1016/j.sjbs.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
Cucumber is an essential vegetable crop throughout the world. Cucumber development is vital for accomplishing both quality and productivity requirements. Meanwhile, numerous factors have resulted in substantial cucumber losses. However, the calreticulin domain-encoding genes (CDEGs) in cucumber were not well-characterized and had little function. In the genome-wide association study (GWAS), we recognized and characterized the CDEGs in Cucumis sativus (cucumber). Through a comprehensive study of C. sativus, our research has unveiled the presence of three unique genes, denoted as CsCRTb, CsCRT3, and CsCNX1, unevenly distributed on three chromosomes in the genome of C. sativus. In accordance to the phylogenetic investigation, these genes may be categorized into three subfamilies. Based on the resemblance with AtCDE genes, we reorganized the all CsCDE genes in accordance with international nomenclature. The expression analysis and cis-acting components revealed that each of CsCDE gene promoter region enclosed number of cis-elements connected with hormone and stress response. According to subcellular localization studies demonstrated that, they were found in deferent locations of the cell such as endoplasmic reticulum, plasma membrane, golgi apparatus, and vacuole, according to subcellular localization studies. Chromosomal distribution analysis and synteny analysis demonstrated the probability of segmental or tandem duplications within the cucumber CDEG gene family. Additionally, miRNAs displayed diverse modes of action, including mRNA cleavage and translational inhibition. We used the RNA seq data to analyze the expression of CDEG genes in response to cold stress and also improved cold tolerance, which was brought on by treating cucumber plants to an exogenous chitosan oligosaccharide spray. Our investigation revealed that these genes responded to this stress in a variety of ways, demonstrating that they may adapt quickly to environmental changes in cucumber plants. This study provides a base for further understanding in reference to CDE gene family and reveals that genes play significant functions in cucumber stress responses.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Medina LY, Serda RE. Intercellular Communication Through Microtubular Highways. Results Probl Cell Differ 2024; 73:155-171. [PMID: 39242379 DOI: 10.1007/978-3-031-62036-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.
Collapse
Affiliation(s)
- Lorél Y Medina
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Rita E Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|