1
|
Emeka PM, Badger-Emeka LI, Thirugnanasambantham K, Alatawi AS. Rutin-Activated Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Attenuates Corneal and Heart Damage in Mice. Pharmaceuticals (Basel) 2024; 17:1523. [PMID: 39598433 PMCID: PMC11597448 DOI: 10.3390/ph17111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Corneal degeneration is a form of progressive cell death caused by multiple factors, such as diabetic retinopathy. It is the most well-known neural degenerative disease caused by macular degeneration in the aged and those with retinitis pigmentosa. Myocardial infarction is becoming a more common burden, causing cardiomyocyte degeneration, ischemia, and heart tissue death. This study examined the preventive effects of rutin on isoproterenol (ISO)-induced oxidative damage (that is, inflammation) on rabbit corneal epithelial cells and mouse heart injuries. Methods: These investigations involved a cytotoxicity test, biochemical analysis, qRT-PCR, Western blotting, and mouse cardiac histopathology. Results: The results showed that rutin enhanced ADH7 and ALDH1A1, retinoic acid signaling components in SIRC1 rabbit corneal cell lines. The production of NO by ocular epithelial cells was significantly reduced. It reduced cTnT and cTnI, CK-MB, and LDH contents in mouse cardiac tissue. The nuclear expressions of Nrf2, Sirt, and HO-1 were all increased by rutin. Docking studies revealed a good interaction between rutin and the Keap protein, enhancing Nrf2 nuclear activity. Conclusions: This showed that rutin can potentially enhance ADH7 and ALDH1A1 corneal signaling components, preventing corneal degeneration and mitigating ISO-induced myocardial infarction (MI) via Keap/Nrf2 expressions.
Collapse
Affiliation(s)
- Promise M. Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Lorina I. Badger-Emeka
- Department of Biomedical Science, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| |
Collapse
|
2
|
Wu C, Zhang J, Yang S, Peng C, Lv M, Liang J, Li X, Xie L, Wei Y, Chen H, He J, Hu T, Xie Z, Yu M. Preparation and Pharmacokinetics of Brain-Targeted Nanoliposome Loaded with Rutin. Int J Mol Sci 2024; 25:11404. [PMID: 39518957 PMCID: PMC11546852 DOI: 10.3390/ijms252111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Rutin is a flavonoid compound with potential for treating Alzheimer's disease, preventing brain damage, mitigating cerebral ischemia-reperfusion injury, and exhibiting anti-glioblastoma activity. However, its efficacy is limited by its low solubility, poor bioavailability, and limited permeability across the blood-brain barrier (BBB). To enhance the bioavailability and brain-targeting ability of Rutin, transferrin-modified Rutin liposome (Tf-Rutin-Lip) was developed using liposomes as a delivery system. Rutin liposomes were prepared using the thin-film dispersion method, and the preparation conditions were optimized using the response surface methodology. Then, transferrin (Tf) was incorporated into the liposomes through covalent modification, yielding Tf-Rutin liposomes. The toxicity of these liposomes on bEnd.3 cells, as well as their impact on the tight junctions of these cells, was rigorously evaluated. Additionally, in vitro and in vivo experiments were conducted to validate the brain-targeting efficacy of the Tf-Rutin liposomes. A susceptible detection method was developed to characterize the pharmacokinetics of Tf-Rutin-Lip further. The optimized conditions for the preparation of Tf-Rutin-Lip were determined as follows: a lipid-to-cholesterol ratio of 4.63:1, a drug-to-lipid ratio of 1:45.84, a preparation temperature of 42.7 °C, a hydration volume of 20 mL, a sonication time of 10 min, a surfactant concentration of 80 mg/mL, a DSPE-MPEG-2000 concentration of 5%, and a DSPE-PEG2000-COOH to DSPE-MPEG-2000 molar ratio of 10%. The liposomes did not affect the cell activity of bEnd.3 cells at 24 h and did not disrupt the tight junction of the blood-brain barrier. Tf-modified liposomes were taken up by bEnd.3 cells, which, in turn, passed through the BBB, thus improving liposomal brain targeting. Furthermore, the results of pharmacokinetic experiments showed that the Cmax, AUC0-∞, AUC0-t, MRT0-∞, and t1/2 of Tf-Rutin-Lip increased 1.99-fold, 2.77-fold, 2.58-fold, 1.26-fold, and 1.19-fold compared to those of free Rutin solution, respectively. These findings suggest that Tf-Rutin-Lip is brain-targeted and may enhance the efficacy of Rutin in the treatment of brain disorders.
Collapse
Affiliation(s)
- Changxu Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jinwu Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Shisen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Chunzi Peng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Maojie Lv
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jing Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Xiaoning Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Hailan Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Tingjun Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| | - Meiling Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| |
Collapse
|
3
|
Hu Y, Chen L, Wu Y, Zhang J, Sheng Z, Zhou Z, Xie Y, Tian G, Wan J, Zhang X, Cai N, Zhou Y, Cao Y, Yang T, Chen X, Liao D, Ge Y, Cheng B, Zhong K, Tian E, Lu J, Lu H, Zhao Y, Yuan W. Palmatine reverse aristolochic acid-induced heart failure through activating EGFR pathway via upregulating IKBKB. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117100. [PMID: 39332194 DOI: 10.1016/j.ecoenv.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Aristolochic acid (AA) is renowned for engendering nephrotoxicity and teratogenicity. Previous literature has reported that AA treatment resulted in heart failure (HF) via inflammatory pathways. Yet, its implications in HF remain comparatively uncharted territory, particularly with respect to underlying mechanisms. In our study, the zebrafish model was employed to delineate the cardiotoxicity of AA exposure and the restorative capacity of a phytogenic alkaloid palmatine (PAL). PAL restored morphology and blood supply in AA-damaged hearts by o-dianisidine staining, fluorescence imaging, and Hematoxylin and Eosin staining. Furthermore, PAL attenuated the detrimental effects of AA on ATPase activity, implying myocardial energy metabolism recovery. PAL decreased the co-localization of neutrophils with cardiomyocytes, implying an attenuation of the inflammatory response induced by AA. A combination of network pharmacological analysis and qPCR validation shed light on the therapeutic mechanism of PAL against AA-induced heart failure via upregulation of the epidermal growth factor receptor (EGFR) signaling pathway. Subsequent evaluations using a transcriptological testing, inhibitor model, and molecular docking assay corroborated PAL as an IKBKB enzyme activator. The study underscores the possible exploitation of the EGFR pathway as a potential therapeutic target for PAL against AA-induced HF, thus furthering the continued investigation of the toxicology and advancement of protective pharmaceuticals for AA.
Collapse
Affiliation(s)
- Ying Hu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Lixin Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yulin Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, Jiangsu 210042, China
| | - Zhixia Sheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ziyi Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yufeng Xie
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Guiyou Tian
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jiaxing Wan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaorun Zhang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Na Cai
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yatong Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yi Cao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tengjiang Yang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaomei Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dalong Liao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yurui Ge
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Bo Cheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jin Lu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huiqiang Lu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China; The First Clinical College of Gannan Medical Uinversity, Ganzhou, Jiangxi 341000, China.
| | - Yan Zhao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Wei Yuan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
4
|
Ma Y, Wang F, Zhao Q, Zhang L, Chen S, Wang S. Identifying Diagnostic Markers and Constructing Predictive Models for Oxidative Stress in Multiple Sclerosis. Int J Mol Sci 2024; 25:7551. [PMID: 39062794 PMCID: PMC11276709 DOI: 10.3390/ijms25147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease characterized by inflammation and neurodegeneration of the central nervous system. Despite the significant role of oxidative stress in the pathogenesis of MS, its precise molecular mechanisms remain unclear. This study utilized microarray datasets from the GEO database to analyze differentially expressed oxidative-stress-related genes (DE-OSRGs), identifying 101 DE-OSRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that these genes are primarily involved in oxidative stress and immune responses. Through protein-protein interaction (PPI) network, LASSO regression, and logistic regression analyses, four genes (MMP9, NFKBIA, NFKB1, and SRC) were identified as being closely related to MS. A diagnostic prediction model based on logistic regression demonstrated good predictive power, as shown by the nomogram curve index and DAC results. An immune-cell infiltration analysis using CIBERSORT revealed significant correlations between these genes and immune cell subpopulations. Abnormal oxidative stress and upregulated expression of key genes were observed in the blood and brain tissues of EAE mice. A molecular docking analysis suggested strong binding potentials between the proteins of these genes and several drug molecules, including isoquercitrin, decitabine, benztropine, and curcumin. In conclusion, this study identifies and validates potential diagnostic biomarkers for MS, establishes an effective prediction model, and provides new insights for the early diagnosis and personalized treatment of MS.
Collapse
Affiliation(s)
- Yantuanjin Ma
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming 650500, China;
| | - Qiting Zhao
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Lili Zhang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shunmei Chen
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| | - Shufen Wang
- Institute of Biomedical Engineering, Kunming Medical Univesity, Kunming 650500, China; (Y.M.); (Q.Z.); (L.Z.)
| |
Collapse
|
5
|
Liu L, Zhong Y, Zheng T, Zhao J, Ding S, Lv J, Xu Q, Zhang Y. Epimedin B exerts an anti-inflammatory effect by regulating the MAPK/NF-κB/NOD-like receptor signalling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109657. [PMID: 38801842 DOI: 10.1016/j.fsi.2024.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Epimedin B (EB), a predominant compound found in Herba Epimedii, has been shown to be effective in the treatment of osteoporosis and peripheral neuropathy. However, the anti-inflammatory effect of EB has not yet been reported. The anti-inflammatory activity of EB was evaluated in a zebrafish inflammation model induced by copper sulfate (CuSO4) and tail cutting. Our findings demonstrated that EB effectively inhibited acute inflammation, mitigated the accumulation of reactive oxygen species (ROS), and ameliorated the neuroinflammation-associated impairment of locomotion in zebrafish. Moreover, EB regulates several genes related to the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB)/Nod-like receptor signalling pathways (mapk8b, src, mmp9, akt1, mapk14a, mapk14b, mapk1, egfra, map3k4, nfκb2, iκbαa, pycard, nlrp3 and caspase1) and inflammatory cytokine (stat6, arg1, irfɑ, stat1ɑ, il-1β, il-4, il-6, il-8, cox-2, ptges, tnf-α and tgf-β). Therefore, our findings indicate that EB could serve as a promising therapeutic candidate for treating inflammation.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yayun Zhong
- School of Pharmacy, Changzhou University, Changzhou, 213164, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Shumin Ding
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
6
|
Wu Z, Liu L, Li L, Cao X, Jia W, Liao X, Zhao Z, Qi H, Fan G, Lu H, Shu C, Zhen M, Wang C, Bai C. Oral nano-antioxidants improve sleep by restoring intestinal barrier integrity and preventing systemic inflammation. Natl Sci Rev 2023; 10:nwad309. [PMID: 38204453 PMCID: PMC10781441 DOI: 10.1093/nsr/nwad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Sleep deprivation (SD) is a severe public health threat that can cause systemic inflammation and nerve damage. Few effective and side-effect-free drugs are available to address SD. However, the bidirectional communications between the brain and gut provide new strategies for anti-SD therapeutics. Here we explored oral delivery of fullerene nano-antioxidants (FNAO) in the SD model to improve sleep by regulating abnormal intestinal barrier and systemic inflammation via the brain-gut axis. SD caused excessive reactive oxygen species (ROS) production and hyperactive inflammatory responses in the intestines of zebrafish and mouse models, leading to disturbed sleep patterns and reduced brain nerve activity. Of note, based on the property of the conjugated π bond of the C60 structure to absorb unpaired electrons, oral FNAO efficiently reduced the excessive ROS in the intestines, maintained redox homeostasis and intestinal barrier integrity, and ameliorated intestinal and systemic inflammation, resulting in superior sleep improvement. Our findings suggest that maintaining intestinal homeostasis may be a promising avenue for SD-related nerve injury therapy.
Collapse
Affiliation(s)
- Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hedong Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Fan
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chunying Shu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|