1
|
Zhang M, Chen X, Zhang Y. Mechanisms of Vitamins Inhibiting Ferroptosis. Antioxidants (Basel) 2024; 13:1571. [PMID: 39765898 PMCID: PMC11673384 DOI: 10.3390/antiox13121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, which is characterized by the uncontrolled and overwhelming peroxidation of cell membrane lipids. Ferroptosis has been implicated in the progression of various pathologies, including steatotic liver, heart failure, neurodegenerative diseases, and diabetes. Targeted inhibition of ferroptosis provides a promising strategy to treat ferroptosis-related diseases. Multivitamins, including vitamins A, B, C, D, E, and K, have shown a good ability to inhibit ferroptosis. For example, vitamin A significantly upregulated the expression of several key ferroptotic gatekeepers genes through nuclear retinoic acid receptors and retinoic X receptors (RAR/RXR). Vitamin B6 could compensate for the impaired glutathione (GSH) levels and restore Glutathione peroxidase 4 (GPX4) expression in cells, ultimately inhibiting ferroptosis. Vitamin D could up-regulate the expression of several anti-ferroptosis proteins by activating vitamin D receptors. Vitamin E and hydroquinone vitamin K (VKH2) can directly inhibit the propagation of lipid peroxidation, thereby inhibiting ferroptosis. In this review, we summarize the currently understood mechanisms by which vitamins inhibit ferroptosis to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Meng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.Z.); (X.C.)
| | - Xin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.Z.); (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yumei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.Z.); (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Han M, Zhu X, Li D, Si Q, Zhu T, Zhou Z, Liu G, Ren D, Jiang Q, Tang S. Quercetin and taxifolin enhance immunity in Chinese sucker (Myxocyprinus asiaticus) and increase its resistance to Aeromonas hydrophila. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101369. [PMID: 39644864 DOI: 10.1016/j.cbd.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
This study investigated the effects of short-term exposure to flavonoids, specifically quercetin and taxifolin, on the transcriptomic responses of Chinese sucker (Myxocyprinus asiaticus) to validate their influence on gene expression related to immunity, antioxidant activity, and metabolism. Using transcriptomic data, we also analyzed their influence on relevant immune genes and examined the Chinese suckers' resistance to A. hydrophila. Oxidative stress, immune defense, and glucose metabolism of Chinese suckers were tested to assess potential enhancements. Significant alterations were observed in multiple immune-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the liver of Chinese suckers, notably the complement and coagulation cascades, degradation of aromatic compounds, and xenobiotic metabolism by cytochrome P450. The key immune markers such as UGT, MPO, C3, and C4 were highlighted in these pathways, underlining their importance in fish immunity. Additionally, oxidative stress related KEGG pathways were notably influenced after exposure to quercetin and taxifolin, displaying markers such as CYP3A, superoxide dismutase, GST, malondialdehyde, and catalase. Quercetin particularly affected the enzymatic activity of glucose oxidase, hexokinase, phosphofructokinase, and ATPase, which are enzymes related to stress responses in fish. Antimicrobial tests revealed that both flavonoids enhanced Chinese suckers' defense against A. hydrophila by bolstering oxidative stress resistance and immunity. These results provided valuable insights for using flavonoids to enhance fish immunity.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Xiaohua Zhu
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Daming Li
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qin Si
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Zihan Zhou
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Guoxing Liu
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Di Ren
- Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Shengkai Tang
- Nanjing Normal University; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
3
|
Yu P, Su L, Li B, Su J, Yuan G. Selenomethionine alleviates Aeromonas hydrophila-induced oxidative stress and ferroptosis via the Nrf2/HO1/GPX4 pathway in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109927. [PMID: 39349229 DOI: 10.1016/j.fsi.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Aeromonas hydrophila infection is a severe, acute, and life-threatening disease affecting grass carp (Ctenopharyngodon idella) in aquaculture. Ferroptosis is a novel form of cell death characterized by the accumulation of free iron and harmful lipid peroxides within cells. While selenomethionine (Se-Met) is known to effectively inhibit ferroptosis and alleviate cell damage, its ability to counteract oxidative stress and ferroptosis induced by A. hydrophila remains unclear. The objective of this study is to reveal the possible mechanism behind the ferroptosis phenomenon during A. hydrophila infection. We established a macrophage model of A. hydrophila invasion to monitor the dynamic changes in iron metabolism markers to evaluate the correlation between ferroptotic stress and A. hydrophila infection. A. hydrophila infection induces cytotoxicity and mitochondrial membrane damage via ferroptosis. This damage is attributed to the accumulation of lipid peroxides due to intracellular ferrous ion overload and glutathione depletion. Supplementation of Se-Met reduced mitochondrial damage, enhanced antioxidant enzyme activity and reduced ferroptosis by activating the Nrf2/HO1/GPX4 axis. These findings provide new insights into the regulatory mechanisms of A. hydrophila-induced ferroptosis in teleosts and suggest that targeted inhibition of ferroptosis may offer a novel therapeutic strategy for managing A. hydrophila infections.
Collapse
Affiliation(s)
- Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Lei Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China.
| |
Collapse
|
4
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Wang Y, Liu J, Xiao H, Sun H, Hu H, Ma X, Zhang A, Zhou H. Dietary intakes of vitamin D promote growth performance and disease resistance in juvenile grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1189-1203. [PMID: 38427282 DOI: 10.1007/s10695-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Vitamin D3 (VD3) is an essential nutrient for fish and participates in a variety of physiological activities. Notably, both insufficient and excessive supplementation of VD3 severely impede fish growth, and the requirements of VD3 for fish vary considerably in different species and growth periods. The present study aimed to evaluate the appropriate requirements of VD3 for juvenile grass carp (Ctenopharyngodon idella) according to growth performance and disease prevention capacity. In this study, diets containing six supplemental levels of VD3 (0, 300, 600, 1200, 2400, and 4800 IU/kg diet) were formulated to investigate the effect(s) of VD3 on the growth performance, antioxidant enzyme activities, and antimicrobial ability in juvenile grass carp. Compared with the VD3 deficiency group (0 IU/kg), the supplementation of 300-2400 IU/kg VD3 significantly enhanced growth performance and increased antioxidant enzyme activities in the fish liver. Moreover, dietary supplementation of VD3 significantly improved the intestinal health by manipulating the composition of intestinal microbiota in juvenile grass carp. In agreement with this notion, the mortality of juvenile grass carp fed with dietary VD3 was much lower than that in VD3 deficient group upon infection with Aeromonas hydrophila. Meanwhile, dietary supplementation of 300-2400 IU/kg VD3 reduced bacterial load in the spleen and head kidney of the infected fish, and 1200 IU/kg VD3 supplementation could decrease enteritis morbidity and increase lysozyme activities in the intestine. These findings strengthened the essential role of dietary VD3 in managing fish growth and antimicrobial capacity. Additionally, based on weight gain ratio and lysozyme activities, the appropriate VD3 requirements for juvenile grass carp were estimated to be 1994.80 and 2321.80 IU/kg diet, respectively.
Collapse
Affiliation(s)
- Yueyue Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Haoran Xiao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
6
|
Liu S, Yu Q, Liu J, Wang H, Wang X, Qin C, Li E, Qin J, Chen L. The interaction between lipid and vitamin D 3 impacts lipid metabolism and innate immunity in Chinese mitten crabs Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109455. [PMID: 38369072 DOI: 10.1016/j.fsi.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|