1
|
Asadinezhad M, Pakzad I, Asadollahi P, Ghafourian S, Kalani BS. Proteomics Exploration of Brucella melitensis to Design an Innovative Multi-Epitope mRNA Vaccine. Bioinform Biol Insights 2024; 18:11779322241272404. [PMID: 39220468 PMCID: PMC11365029 DOI: 10.1177/11779322241272404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Brucellosis is a chronic and debilitating disease in humans, causing great economic losses in the livestock industry. Making an effective vaccine is one of the most important concerns for this disease. The new mRNA vaccine technology due to its accuracy and high efficiency has given promising results in various diseases. The objective of this research was to create a novel mRNA vaccine with multiple epitopes targeting Brucella melitensis. Seventeen antigenic proteins and their appropriate epitopes were selected with immunoinformatic tools and surveyed in terms of toxicity, allergenicity, and homology. Then, their presentation and identification by MHC cells and other immune cells were checked with valid tools such as molecular docking, and a multi-epitope protein was modeled, and after optimization, mRNA was analyzed in terms of structure and stability. Ultimately, the immune system's reaction to this novel vaccine was evaluated and the results disclosed that the designed mRNA construct can be an effective and promising vaccine that requires laboratory and clinical trials.
Collapse
Affiliation(s)
- Maryam Asadinezhad
- Students Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Milijasevic M, Veskovic-Moracanin S, Babic Milijasevic J, Petrovic J, Nastasijevic I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024; 13:2448. [PMID: 39123639 PMCID: PMC11311770 DOI: 10.3390/foods13152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The application of antimicrobials in aquaculture primarily aims to prevent and treat bacterial infections in fish, but their inappropriate use may result in the emergence of zoonotic antibiotic-resistant bacteria and the subsequent transmission of resistant strains to humans via food consumption. The aquatic environment serves as a potential reservoir for resistant bacteria, providing an ideal breeding ground for development of antimicrobial resistance (AMR). The mutual inter-connection of intensive fish-farming systems with terrestrial environments, the food processing industry and human population creates pathways for the transmission of resistant bacteria, exacerbating the problem further. The aim of this study was to provide an overview of the most effective and available risk mitigation strategies to tackle AMR in aquaculture, based on the One Health (OH) concept. The stringent antimicrobial use guidelines, promoting disease control methods like enhanced farm biosecurity measures and vaccinations, alternatives to antibiotics (ABs) (prebiotics, probiotics, immunostimulants, essential oils (EOs), peptides and phage therapy), feeding practices, genetics, monitoring water quality, and improving wastewater treatment, rather than applying excessive use of antimicrobials, can effectively prevent the development of AMR and release of resistant bacteria into the environment and food. The contribution of the environment to AMR development traditionally receives less attention, and, therefore, environmental aspects should be included more prominently in OH efforts to predict, detect and prevent the risks to health. This is of particular importance for low and middle-income countries with a lack of integration of the national AMR action plans (NAPs) with the aquaculture-producing environment. Integrated control of AMR in fisheries based on the OH approach can contribute to substantial decrease in resistance, and such is the case in Asia, where in aquaculture, the percentage of antimicrobial compounds with resistance exceeding 50% (P50) decreased from 52% to 22% within the period of the previous two decades.
Collapse
Affiliation(s)
- Milan Milijasevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| | | | | | - Jelena Petrovic
- Scientific Veterinary Institute ‘Novi Sad’, 21113 Novi Sad, Serbia;
| | - Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| |
Collapse
|
3
|
Yu D, Yang G, Mo J, Zhang M, Xia H, Gan Z, Lu Y. Identification and functional characterization of interleukin-22 (IL-22) in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109598. [PMID: 38697375 DOI: 10.1016/j.fsi.2024.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Guanjian Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Hongli Xia
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
4
|
Nguyen PTD, Giovanni A, Maekawa S, Wang PC, Chen SC. Enhanced effectiveness in preventing Nocardia seriolae infection utilizing heterologous prime-boost approach in orange-spotted grouper Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109663. [PMID: 38821228 DOI: 10.1016/j.fsi.2024.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Persistent nocardiosis has prompted exploration of the effectiveness of heterologous approaches to prevent severe infections. We have previously reported the efficacy of a nucleic acid vaccine in protecting groupers from highly virulent Nocardia seriolae infections. Ongoing research has involved the supplementation of recombinant cholesterol oxidase (rCho) proteins through immunization with a DNA vaccine to enhance the protective capacity of orange-spotted groupers. Recombinant rCho protein exhibited a maturity and biological structure comparable to that expressed in N. seriolae, as confirmed by Western blot immunodetection assays. The immune responses observed in vaccinated groupers were significantly higher than those observed in single-type homologous vaccinations, DNA or recombinant proteins alone (pcD:Cho and rCho/rCho), especially cell-mediated immune and mucosal immune responses. Moreover, the reduction in N. seriolae occurrence in internal organs, such as the head, kidney, and spleen, was consistent with the vaccine's efficacy, which increased from approximately 71.4 % to an undetermined higher percentage through heterologous vaccination strategies of 85.7 %. This study underscores the potential of Cho as a novel vaccine candidate and a heterologous approach for combating chronic infections such as nocardiosis.
Collapse
Affiliation(s)
- Phuong T D Nguyen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Aquacultural Biotechnology, Biotechnology Centre of Ho Chi Minh City, Viet Nam.
| | - Andre Giovanni
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shun Maekawa
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
5
|
Asadollahi P, Kalani BS. Novel toxin-based mRNA vaccine against Clostridium perfringens using in silico approaches. Toxicon 2024; 238:107584. [PMID: 38185287 DOI: 10.1016/j.toxicon.2023.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
Clostridium perfringens is a bacterium that causes gastrointestinal diseases in humans and animals. The several powerful toxins such as alpha toxin (CPA), beta toxin (CPB), enterotoxin (CPE), Epsilon toxin (ETX), and theta toxin, play a major role in its pathogenesis. Traditional vaccine development methods are time-consuming and costly. In silico approaches offer an alternative strategy for designing vaccines by analyzing biological data and predicting immunogenic peptides. In this study, computational tools were utilized to design a RNA vaccine targeting C. perfringens toxins. Toxin protein sequences were retrieved and their linear B-cell, MHCI, and MHCII binding epitopes were predicted. Allergenicity, toxigenicity, and IFN-γ induction were assessed to select non-allergenic, non-toxic, and IFN-γ-inducing epitopes. Molecular docking was performed to identify epitopes that fit within the binding cleft of MHC alleles. A final peptide vaccine construct was designed with selected epitopes separated by a linker sequence. The antigenicity and physicochemical properties of the vaccine were evaluated. Immune response simulation showed enhanced secondary and tertiary immune responses, increased levels of immunoglobulins, cytotoxic T lymphocytes, helper T lymphocytes, macrophage activity, and elevated levels IFN-γ and interleukin-2. Docking analysis was done to assess interactions between the vaccine structure and Toll-like receptors. Codon optimization was performed, and a final RNA vaccine construct was designed. The secondary structure of the RNA vaccine was predicted and validated. Overall, this study demonstrates the potential of in silico approaches for designing an RNA vaccine against C. perfringens toxins, contributing to improved prevention and control of associated diseases.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|