1
|
Nguidi M, Gomes V, Vullo C, Rodrigues P, Rotondo M, Longaray M, Catelli L, Martínez B, Campos A, Carvalho E, Orovboni VO, Keshinro SO, Simão F, Gusmão L. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Sci Rep 2024; 14:15653. [PMID: 38977763 PMCID: PMC11231350 DOI: 10.1038/s41598-024-65428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.
Collapse
Affiliation(s)
- Masinda Nguidi
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Carlos Vullo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Pedro Rodrigues
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Martina Rotondo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Micaela Longaray
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Laura Catelli
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Beatriz Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Afonso Campos
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Victoria O Orovboni
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Almohammed EK, Hadi A, Al-Asmakh M, Lazim H. The Qatari population's genetic structure and gene flow as revealed by the Y chromosome. PLoS One 2023; 18:e0290844. [PMID: 37656680 PMCID: PMC10473524 DOI: 10.1371/journal.pone.0290844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
The Y-chromosome has been widely used in forensic genetic applications and human population genetic studies due to its uniparental origins. A large database on the Qatari population was created for comparison with other databases from the Arabian Peninsula, the Middle East, and Africa. We provide a study of 23 Y-STR loci included in PowerPlex Y23 (Promega, USA) that were genotyped to produce haplotypes in 379 unrelated males from Qatar, a country at the crossroads of migration patterns. Overall, the most polymorphic locus provided by the Promega kit was DYS458, with a genetic diversity value of 0.85 and a haplotype diversity of 0.998924. Athey's Haplogroup Predictor tool was used to predict haplogroups from Y-STR haplotypes in the Qatari population. In a median-joining network, the haplogroup J1 predominance (49%) in Qatar generated a star-like expansion cluster. The graph of population Q-matrix was developed using Y-STR data from 38 Middle Eastern and 97 African populations (11,305 individuals), and it demonstrated a stronger sub-grouping of countries within each ethnic group and showed the effect of Arabs on the indigenous Berbers of North Africa. The estimated migration rate between the Qatari and other Arabian populations was inferred using Bayesian coalescence theory in the Migrate-n program. According to the Gene Flow study, the main migration route was from Yemen to Kuwait through Qatar. Our research, using the PowerPlex Y23 database, shows the importance of gene diversity, as well as regional and social structuring, in determining the utility of demographic and forensic databases.
Collapse
Affiliation(s)
- Eida Khalaf Almohammed
- Ministry of Interior of Qatar, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Abdullah Hadi
- University of Central Lancashire Medical School, Preston, United Kingdom
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hayder Lazim
- School of Medicine, Faculty of Health, Social Care and Medicine (FHSCM), Edge Hill University, Ormskirk, United Kingdom
| |
Collapse
|
3
|
Castillo A, Rondón F, Mantilla G, Gusmão L, Simão F. Maternal ancestry and lineages diversity of the Santander population from Colombia. Forensic Sci Res 2023; 8:241-248. [PMID: 38221971 PMCID: PMC10785602 DOI: 10.1093/fsr/owad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2023] [Indexed: 01/16/2024] Open
Abstract
Santander, located in the Andean region of Colombia, is one of the 32 departments of the country. Its population was shaped by intercontinental admixture between autochthonous native Americans, European settlers, and African slaves. To establish forensic databases of haplotype frequencies, the evaluation of population substructure is crucial to capture the genetic diversity in admixed populations. Total control region mitochondrial deoxyribonucleic acid haplotypes were determined for 204 individuals born in the seven provinces across the department. The maternal native heritage is highly preserved in Santander genetic background, with 90% of the haplotypes belonging to haplogroups inside A2, B4, C1, and D. Most native lineages are found broadly across the American continent, while some sub-branches are concentrated in Central America and north South America. Subtle European (6%) and African (4%) input was detected. In pairwise comparisons between provinces, relatively high FST values were found in some cases, although not statistically significant. Nonetheless, when provinces were grouped according to the principal component analysis results, significant differences were detected between groups. The database on mitochondrial deoxyribonucleic acid control region haplotype frequencies established here can be further used for populational and forensic purposes.
Collapse
Affiliation(s)
- Adriana Castillo
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Fernando Rondón
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Gerardo Mantilla
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, 20550-900, Rio de Janeiro, Brazil
| | - Filipa Simão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, 20550-900, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Searching for the roots of the first free African American community. Sci Rep 2020; 10:20634. [PMID: 33244039 PMCID: PMC7691995 DOI: 10.1038/s41598-020-77608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
San Basilio de Palenque is an Afro-descendant community near Cartagena, Colombia, founded in the sixteenth century. The recognition of the historical and cultural importance of Palenque has promoted several studies, namely concerning the African roots of its first inhabitants. To deepen the knowledge of the origin and diversity of the Palenque parental lineages, we analysed a sample of 81 individuals for the entire mtDNA Control Region as well as 92 individuals for 27 Y-STRs and 95 for 51 Y-SNPs. The results confirmed the strong isolation of the Palenque, with some degree of influx of Native American maternal lineages, and a European admixture exclusively mediated by men. Due to the high genetic drift observed, a pairwise FST analysis with available data on African populations proved to be inadequate for determining population affinities. In contrast, when a phylogenetic approach was used, it was possible to infer the phylogeographic origin of some lineages in Palenque. Contradicting previous studies indicating a single African origin, our results evidence parental genetic contributions from widely different African regions.
Collapse
|
5
|
Martínez B, Nguidi M, Catelli L, Vullo C, Okolie V, Keshinro S, Carvalho E, Gusmão L, Simão F. Mitochondrial genetic profile of the Yoruba population from Nigeria. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Simão F, Ferreira AP, de Carvalho EF, Parson W, Gusmão L. Defining mtDNA origins and population stratification in Rio de Janeiro. Forensic Sci Int Genet 2018; 34:97-104. [PMID: 29433058 DOI: 10.1016/j.fsigen.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
The genetic composition of the Brazilian population was shaped by interethnic admixture between autochthonous Native Americans, Europeans settlers and African slaves. This structure, characteristic of most American populations, implies the need for large population forensic databases to capture the high diversity that is usually associated with admixed populations. In the present work, we sequenced the control region of mitochondrial DNA from 205 non-related individuals living in the Rio de Janeiro metropolitan region. Overall high haplotype diversity (0.9994 ± 0.0006) was observed, and pairwise comparisons showed a high proportion of haplotype pairs with more than one-point differences. When ignoring homopolymeric tracts, pairwise comparisons showed no differences 0.18% of the time, and differences in a single position were found with a frequency of 0.32%. A high percentage of African mtDNA was found (42%), with lineages showing a major South West origin. For the West Eurasian and Native American haplogroups (representing 32% and 26%, respectively) it was not possible to evaluate a clear geographic or linguistic affiliation. When grouping the mtDNA lineages according to their continental origin (Native American, European and African), differences were observed for the ancestry proportions estimated with autosomal ancestry-informative markers, suggesting some level of genetic substructure. The results from this study are in accordance with historical data where admixture processes are confirmed with a strong maternal contribution of African maternal ancestry and a relevant contribution of Native American maternal ancestry. Moreover, the evidence for some degree of association between mtDNA and autosomal information should be considered when combining these types of markers in forensic analysis.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University,University Park, PA, USA.
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Oliveira AM, Gusmão L, Schneider PM, Gomes I. Detecting the Paternal Genetic Diversity in West Africa using Y-STRs and Y-SNPs. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Fortes-Lima C, Brucato N, Croze M, Bellis G, Schiavinato S, Massougbodji A, Migot-Nabias F, Dugoujon JM. Genetic population study of Y-chromosome markers in Benin and Ivory Coast ethnic groups. Forensic Sci Int Genet 2015; 19:232-237. [PMID: 26275614 DOI: 10.1016/j.fsigen.2015.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
Ninety-six single nucleotide polymorphisms (SNPs) and seventeen short tandem repeat (STRs) were investigated on the Y-chromosome of 288 unrelated healthy individuals from populations in Benin (Bariba, Yoruba, and Fon) and the Ivory Coast (Ahizi and Yacouba). We performed a multidimensional scaling analysis based on FST and RST genetic distances using a large extensive database of sub-Saharan African populations. There is more genetic homogeneity in Ivory Coast populations compared with populations from Benin. Notably, the Beninese Yoruba are significantly differentiated from neighbouring groups, but also from the Yoruba from Nigeria (FST>0.05; P<0.01). The Y-chromosome dataset presented here provides new valuable data to understand the complex genetic diversity and human male demographic events in West Africa.
Collapse
Affiliation(s)
- Cesar Fortes-Lima
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France
| | - Nicolas Brucato
- Leiden University Center for Linguistics, Leiden, the Netherlands
| | - Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Gil Bellis
- Institut National d'Etudes Démographiques, Paris, France
| | - Stephanie Schiavinato
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Florence Migot-Nabias
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin; Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, 4 avenue de l'Observatoire, 75006 Paris, France; COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Jean-Michel Dugoujon
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France.
| |
Collapse
|
9
|
Simão F, Costa HA, da Silva CV, Ribeiro T, Porto MJ, Santos JC, Amorim A. Genetic portrait of Lisboa immigrant population from Angola with mitochondrial DNA. Forensic Sci Int Genet 2014; 15:33-8. [PMID: 25451274 DOI: 10.1016/j.fsigen.2014.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022]
Abstract
Portugal has been considered a country of emigrants, nevertheless in the past decades the number of immigrants has grown throughout all the country. This migratory flux has contributed to a raise of heterogeneity at multiple levels. According to statistical data, at the end of 2012 the total number of Angolan immigrants in Portugal equalled about 20,000 individuals. A territorial predominance has been found for the metropolitan region of Lisboa. Angola is a country located in the Atlantic coast of Africa. The presence of Bantu people and the colonisation by Portuguese people on Angolan territory are considered to be the major modulators of the genetic patterns in Angola. Mitochondrial DNA is known for its features that enable an approach to the study of human origin and evolution, as well to the different migration pathways of populations. This genetic marker can also contribute to ascertaining the identity of individuals in forensic cases. The main aim of this study was to determine the genetic structure of the Angolan immigrant population living in Lisboa. Therefore, a total of 173 individuals, inhabitants in Lisboa, nonrelated and with Angolan ancestry were studied. Total control region of mitochondrial DNA was amplified from position 16,024 to position 576 using two pairs of primers - L15997/H016 and L16555/H639. The majority of the identified haplotypes belong to mtDNA lineages known to be specific of the sub-Saharan region. Our results show that this immigrant population inhabitant in Lisboa presents a genetic profile that is characteristic of African populations. This study also demonstrates the genetic diversity that this immigrant population introduces in Lisboa. This does not contradict the historical data concerning colonization of Angola, since this was made mainly by male European individuals, who did not contribute with their maternal information of mtDNA. Lisboa immigrant population from Angola can be accessed via EMPOP dataset with accession number EMPOP662.
Collapse
Affiliation(s)
- Filipa Simão
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Portugal
| | - Heloísa Afonso Costa
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Claúdia Vieira da Silva
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Teresa Ribeiro
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Maria João Porto
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Jorge Costa Santos
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Faculdade de Medicina da Universidade de Lisboa, Portugal; Instituto Superior de Ciências de Saúde Egas Moniz, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - António Amorim
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Instituto Superior de Ciências de Saúde Egas Moniz, Portugal; Faculdade de Ciências da Universidade de Lisboa, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal.
| |
Collapse
|
10
|
Oliveira AM, Domingues PM, Gomes V, Amorim A, Jannuzzi J, de Carvalho EF, Gusmão L. Male lineage strata of Brazilian population disclosed by the simultaneous analysis of STRs and SNPs. Forensic Sci Int Genet 2014; 13:264-8. [PMID: 25259770 DOI: 10.1016/j.fsigen.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/09/2022]
Abstract
Brazil has a large territory divided in five geographical regions harboring highly diverse populations that resulted from different degrees and modes of admixture between Native Americans, Europeans and Africans. In this study, a sample of 605 unrelated males was genotyped for 17 Y-STRs and 46 Y-SNPs aiming a deep characterization of the male gene pool of Rio de Janeiro and its comparison with other Brazilian populations. High values of Y-STR haplotype diversity (0.9999±0.0001) and Y-SNP haplogroup diversity (0.7589±0.0171) were observed. Population comparisons at both haplotype and haplogroup levels showed significant differences between Brazilian South Eastern and Northern populations that can be explained by differences in the proportion of African and Native American Y chromosomes. Statistical significant differences between admixed urban samples from the five regions of Brazil were not previously detected at haplotype level based on smaller size samples from South East, which emphasizes the importance of sample size to detected population stratification for an accurate interpretation of profile matches in kinship and forensic casework. Although not having an intra-population discrimination power as high as the Y-STRs, the Y-SNPs are more powerful to disclose differences in admixed populations. In this study, the combined analysis of these two types of markers proved to be a good strategy to predict population sub-structure, which should be taken into account when delineating forensic database strategies for Y chromosome haplotypes.
Collapse
Affiliation(s)
- Andréa M Oliveira
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Patricia M Domingues
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Verónica Gomes
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Juliana Jannuzzi
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizeu F de Carvalho
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Noguera MC, Schwegler A, Gomes V, Briceño I, Alvarez L, Uricoechea D, Amorim A, Benavides E, Silvera C, Charris M, Bernal JE, Gusmão L. Colombia's racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol 2013; 41:453-9. [PMID: 24215508 DOI: 10.3109/03014460.2013.852244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine the African, European and Native-American paternal contributions in genetic samples from the Department of Bolivar (Colombia) with the aims of establishing (1) possible population substructures, and (2) the proportion of biological African heritage in admixed populations of European, Amerindian, and African descent. METHODS Y-SNPs were typed in samples from six communities, including Palenque (renowned for its African linguistic and cultural heritage). RESULTS Findings reveal a high diversity of Y-haplogroups. With the exception of Palenque, the sum of European male lineages uniformly exceeded 57%. In Palenque, African lineages accounted for 57.7% of its chromosomes, with European male lineages constituting a mere 38.5%. In Pinillos, a significant proportion (23.8%) of the chromosomes belongs to the Native American haplogroup Q1a3a*-M3. Genetic differentiation analyses reveal significant divergences in most pairwise comparisons among the Bolivar municipalities, and the same holds between Bolivar and other South American populations. CONCLUSIONS Heterogeneous patterns of admixture reveal a genetic substructure within the Department of Bolivar. On the paternal side, five out of the six communities studied exhibit a predominantly European gene pool. The exception is Palenque, where European input (38%) is more significant than we had expected.
Collapse
Affiliation(s)
- María Claudia Noguera
- Pontificia Universidad Javeriana, Instituto de Genética Humana, Facultad de Medicina , Bogotá , Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bučková J, Černý V, Novelletto A. Multiple and differentiated contributions to the male gene pool of pastoral and farmer populations of the African Sahel. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:10-21. [DOI: 10.1002/ajpa.22236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Bučková
- Department of Anthropology and Human Genetics, Faculty of Science; Charles University; Prague; Czech Republic
| | | | | |
Collapse
|
13
|
Simms TM, Wright MR, Martinez E, Regueiro M, McCartney Q, Herrera RJ. Y-STR diversity and sex-biased gene flow among Caribbean populations. Gene 2012. [PMID: 23178184 DOI: 10.1016/j.gene.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we report, for the first time, the allele and haplotype frequencies of 17 Y-STR (Y-filer) loci in the populations of Haiti, Jamaica and the Bahamas (Abaco, Eleuthera, Exuma, Grand Bahama, Long Island and New Providence). This investigation was undertaken to assess the paternal genetic structure of the abovementioned Caribbean islands. A total of 607 different haplotypes were identified among the 691 males examined, of which 537 (88.5%) were unique. Haplotype diversities (HD) ranged from 0.989 in Long Island to 1.000 in Grand Bahama, with limited haplotype sharing observed among these Caribbean collections. Discriminatory capacity (DC) values were also high, ranging from 79.1% to 100% in Long Island and Grand Bahama, respectively, illustrating the capacity of this set of markers to differentiate between patrilineal related individuals within each population. Phylogenetic comparison of the Bahamian, Haitian and Jamaican groups with available African, European, East Asian and Native American populations reveals strong genetic ties with the continental African collections, a finding that corroborates our earlier work using autosomal STR and Y-chromosome binary markers. In addition, various degrees of sex-biased gene flow exhibiting disproportionately higher European paternal (as compared to autosomal) influences were detected in all Caribbean islands genotyped except for Abaco and Eleuthera. We attribute the presence or absence of asymmetric gene flow to unique, island specific demographic events and family structures.
Collapse
Affiliation(s)
- Tanya M Simms
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
14
|
The genetic landscape of Equatorial Guinea and the origin and migration routes of the Y chromosome haplogroup R-V88. Eur J Hum Genet 2012; 21:324-31. [PMID: 22892526 DOI: 10.1038/ejhg.2012.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human Y chromosomes belonging to the haplogroup R1b1-P25, although very common in Europe, are usually rare in Africa. However, recently published studies have reported high frequencies of this haplogroup in the central-western region of the African continent and proposed that this represents a 'back-to-Africa' migration during prehistoric times. To obtain a deeper insight into the history of these lineages, we characterised the paternal genetic background of a population in Equatorial Guinea, a Central-West African country located near the region in which the highest frequencies of the R1b1 haplogroup in Africa have been found to date. In our sample, the large majority (78.6%) of the sequences belong to subclades in haplogroup E, which are the most frequent in Bantu groups. However, the frequency of the R1b1 haplogroup in our sample (17.0%) was higher than that previously observed for the majority of the African continent. Of these R1b1 samples, nine are defined by the V88 marker, which was recently discovered in Africa. As high microsatellite variance was found inside this haplogroup in Central-West Africa and a decrease in this variance was observed towards Northeast Africa, our findings do not support the previously hypothesised movement of Chadic-speaking people from the North across the Sahara as the explanation for these R1b1 lineages in Central-West Africa. The present findings are also compatible with an origin of the V88-derived allele in the Central-West Africa, and its presence in North Africa may be better explained as the result of a migration from the south during the mid-Holocene.
Collapse
|