1
|
Martínez B, Nguidi M, Catelli L, Vullo C, Okolie V, Keshinro S, Carvalho E, Gusmão L, Simão F. Mitochondrial genetic profile of the Yoruba population from Nigeria. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Simão F, Ferreira AP, de Carvalho EF, Parson W, Gusmão L. Defining mtDNA origins and population stratification in Rio de Janeiro. Forensic Sci Int Genet 2018; 34:97-104. [PMID: 29433058 DOI: 10.1016/j.fsigen.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
The genetic composition of the Brazilian population was shaped by interethnic admixture between autochthonous Native Americans, Europeans settlers and African slaves. This structure, characteristic of most American populations, implies the need for large population forensic databases to capture the high diversity that is usually associated with admixed populations. In the present work, we sequenced the control region of mitochondrial DNA from 205 non-related individuals living in the Rio de Janeiro metropolitan region. Overall high haplotype diversity (0.9994 ± 0.0006) was observed, and pairwise comparisons showed a high proportion of haplotype pairs with more than one-point differences. When ignoring homopolymeric tracts, pairwise comparisons showed no differences 0.18% of the time, and differences in a single position were found with a frequency of 0.32%. A high percentage of African mtDNA was found (42%), with lineages showing a major South West origin. For the West Eurasian and Native American haplogroups (representing 32% and 26%, respectively) it was not possible to evaluate a clear geographic or linguistic affiliation. When grouping the mtDNA lineages according to their continental origin (Native American, European and African), differences were observed for the ancestry proportions estimated with autosomal ancestry-informative markers, suggesting some level of genetic substructure. The results from this study are in accordance with historical data where admixture processes are confirmed with a strong maternal contribution of African maternal ancestry and a relevant contribution of Native American maternal ancestry. Moreover, the evidence for some degree of association between mtDNA and autosomal information should be considered when combining these types of markers in forensic analysis.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University,University Park, PA, USA.
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Chaitanya L, van Oven M, Brauer S, Zimmermann B, Huber G, Xavier C, Parson W, de Knijff P, Kayser M. High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database. Forensic Sci Int Genet 2015; 21:158-67. [PMID: 26774101 DOI: 10.1016/j.fsigen.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 12/06/2015] [Indexed: 12/01/2022]
Abstract
The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands.
Collapse
Affiliation(s)
- Lakshmi Chaitanya
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Silke Brauer
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Human Biological Traces, Netherlands Forensic Institute, The Hague, The Netherlands
| | - Bettina Zimmermann
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Genetic portrait of Lisboa immigrant population from Cabo Verde with mitochondrial DNA analysis. J Genet 2015; 94:509-12. [PMID: 26440093 DOI: 10.1007/s12041-015-0552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Simão F, Costa HA, da Silva CV, Ribeiro T, Porto MJ, Santos JC, Amorim A. Genetic portrait of Lisboa immigrant population from Angola with mitochondrial DNA. Forensic Sci Int Genet 2014; 15:33-8. [PMID: 25451274 DOI: 10.1016/j.fsigen.2014.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022]
Abstract
Portugal has been considered a country of emigrants, nevertheless in the past decades the number of immigrants has grown throughout all the country. This migratory flux has contributed to a raise of heterogeneity at multiple levels. According to statistical data, at the end of 2012 the total number of Angolan immigrants in Portugal equalled about 20,000 individuals. A territorial predominance has been found for the metropolitan region of Lisboa. Angola is a country located in the Atlantic coast of Africa. The presence of Bantu people and the colonisation by Portuguese people on Angolan territory are considered to be the major modulators of the genetic patterns in Angola. Mitochondrial DNA is known for its features that enable an approach to the study of human origin and evolution, as well to the different migration pathways of populations. This genetic marker can also contribute to ascertaining the identity of individuals in forensic cases. The main aim of this study was to determine the genetic structure of the Angolan immigrant population living in Lisboa. Therefore, a total of 173 individuals, inhabitants in Lisboa, nonrelated and with Angolan ancestry were studied. Total control region of mitochondrial DNA was amplified from position 16,024 to position 576 using two pairs of primers - L15997/H016 and L16555/H639. The majority of the identified haplotypes belong to mtDNA lineages known to be specific of the sub-Saharan region. Our results show that this immigrant population inhabitant in Lisboa presents a genetic profile that is characteristic of African populations. This study also demonstrates the genetic diversity that this immigrant population introduces in Lisboa. This does not contradict the historical data concerning colonization of Angola, since this was made mainly by male European individuals, who did not contribute with their maternal information of mtDNA. Lisboa immigrant population from Angola can be accessed via EMPOP dataset with accession number EMPOP662.
Collapse
Affiliation(s)
- Filipa Simão
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Portugal
| | - Heloísa Afonso Costa
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Claúdia Vieira da Silva
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Teresa Ribeiro
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Maria João Porto
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - Jorge Costa Santos
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Faculdade de Medicina da Universidade de Lisboa, Portugal; Instituto Superior de Ciências de Saúde Egas Moniz, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal
| | - António Amorim
- Instituto Nacional de Medicina Legal e Ciências Forenses, Portugal; Instituto Superior de Ciências de Saúde Egas Moniz, Portugal; Faculdade de Ciências da Universidade de Lisboa, Portugal; CENCIFOR - Centro de Ciências Forenses, Portugal.
| |
Collapse
|
6
|
Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagacé R, Irwin J. Reprint of: Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 2013; 7:632-639. [PMID: 24119954 DOI: 10.1016/j.fsigen.2013.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics.
Collapse
Affiliation(s)
- Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Bettina Zimmermann
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Sibylle M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luis Souto
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Rhena Delport
- Department of Chemical Pathology, School of Medicine, University of Pretoria, South Africa
| | | | | | | | | |
Collapse
|
7
|
Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 2013; 7:543-9. [PMID: 23948325 PMCID: PMC3757157 DOI: 10.1016/j.fsigen.2013.06.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics.
Collapse
|