1
|
Kasu M, Cloete K, Pitere R, Tsiana K, D’Amato M. The Genetic Landscape of South African males: A Y-STR Perspective. Forensic Sci Int Genet 2022; 58:102677. [DOI: 10.1016/j.fsigen.2022.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
|
2
|
Simão F, Ribeiro J, Vullo C, Catelli L, Gomes V, Xavier C, Huber G, Bodner M, Quiroz A, Ferreira AP, Carvalho EF, Parson W, Gusmão L. The Ancestry of Eastern Paraguay: A Typical South American Profile with a Unique Pattern of Admixture. Genes (Basel) 2021; 12:1788. [PMID: 34828394 PMCID: PMC8625094 DOI: 10.3390/genes12111788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Immigrants from diverse origins have arrived in Paraguay and produced important demographic changes in a territory initially inhabited by indigenous Guarani. Few studies have been performed to estimate the proportion of Native ancestry that is still preserved in Paraguay and the role of females and males in admixture processes. Therefore, 548 individuals from eastern Paraguay were genotyped for three marker sets: mtDNA, Y-SNPs and autosomal AIM-InDels. A genetic homogeneity was found between departments for each set of markers, supported by the demographic data collected, which showed that only 43% of the individuals have the same birthplace as their parents. The results show a sex-biased intermarriage, with higher maternal than paternal Native American ancestry. Within the native mtDNA lineages in Paraguay (87.2% of the total), most haplogroups have a broad distribution across the subcontinent, and only few are concentrated around the Paraná River basin. The frequency distribution of the European paternal lineages in Paraguay (92.2% of the total) showed a major contribution from the Iberian region. In addition to the remaining legacy of the colonial period, the joint analysis of the different types of markers included in this study revealed the impact of post-war migrations on the current genetic background of Paraguay.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Julyana Ribeiro
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Laura Catelli
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal;
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), 4099-002 Porto, Portugal
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Alfredo Quiroz
- Instituto de Previsión Social, Asunción 100153, Paraguay;
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Elizeu F. Carvalho
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| |
Collapse
|
3
|
Azulay RSDS, Porto LC, Silva DA, Tavares MDG, Reis RMDF, Nascimento GC, Damianse SDSP, Rocha VCDC, Magalhães M, Rodrigues V, Carvalho PRVB, Faria MDS, Gomes MB. Genetic ancestry inferred from autosomal and Y chromosome markers and HLA genotypes in Type 1 Diabetes from an admixed Brazilian population. Sci Rep 2021; 11:14157. [PMID: 34239025 PMCID: PMC8266844 DOI: 10.1038/s41598-021-93691-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the relationship between genetic ancestry inferred from autosomal and Y chromosome markers and HLA genotypes in patients with Type 1 Diabetes from an admixed Brazilian population. Inference of autosomal ancestry; HLA-DRB1, -DQA1 and -DQB1 typifications; and Y chromosome analysis were performed. European autosomal ancestry was about 50%, followed by approximately 25% of African and Native American. The European Y chromosome was predominant. The HLA-DRB1*03 and DRB1*04 alleles presented risk association with T1D. When the Y chromosome was European, DRB1*03 and DRB1*04 homozygote and DRB1*03/DRB1*04 heterozygote genotypes were the most frequent. The results suggest that individuals from Maranhão have a European origin as their major component; and are patrilineal with greater frequency from the R1b haplogroup. The predominance of the HLA-DRB1*03 and DRB1*04 alleles conferring greater risk in our population and being more frequently related to the ancestry of the European Y chromosome suggests that in our population, the risk of T1D can be transmitted by European ancestors of our process miscegenation. However, the Y sample sizes of Africans and Native Americans were small, and further research should be conducted with large mixed sample sizes to clarify this possible association.
Collapse
Affiliation(s)
- Rossana Santiago de Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil.
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil.
| | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory (HLA), Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory (LDD), Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria da Glória Tavares
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
| | | | - Gilvan Cortês Nascimento
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
| | - Sabrina da Silva Pereira Damianse
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
| | - Viviane Chaves de Carvalho Rocha
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
| | - Marcelo Magalhães
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
- Clinical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC - HUUFMA), São Luís, Brazil
| | - Vandilson Rodrigues
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
| | - Paulo Ricardo Vilas Boas Carvalho
- Histocompatibility and Cryopreservation Laboratory (HLA), Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manuel Dos Santos Faria
- Service of Endocrinology, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), Rua Barão de Itapary, 227, Centro, São Luís, Maranhão, 65020-070, Brazil
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil
- Clinical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC - HUUFMA), São Luís, Brazil
| | - Marília Brito Gomes
- Diabetes Unit, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Fan H, Xie Q, Li Y, Wang L, Wen SQ, Qiu P. Insights Into Forensic Features and Genetic Structures of Guangdong Maoming Han Based on 27 Y-STRs. Front Genet 2021; 12:690504. [PMID: 34220963 PMCID: PMC8253533 DOI: 10.3389/fgene.2021.690504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR® Yfiler® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.
Collapse
Affiliation(s)
- Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Institute of Archaeological Science, Fudan University, Shanghai, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lingxiang Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Biagini SA, Ramos-Luis E, Comas D, Calafell F. The place of metropolitan France in the European genomic landscape. Hum Genet 2020; 139:1091-1105. [DOI: 10.1007/s00439-020-02158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
6
|
The Dutch Y-chromosomal landscape. Eur J Hum Genet 2019; 28:287-299. [PMID: 31488894 PMCID: PMC7029002 DOI: 10.1038/s41431-019-0496-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 12/05/2022] Open
Abstract
Previous studies indicated existing, albeit limited, genetic-geographic population substructure in the Dutch population based on genome-wide data and a lack of this for mitochondrial SNP based data. Despite the aforementioned studies, Y-chromosomal SNP data from the Netherlands remain scarce and do not cover the territory of the Netherlands well enough to allow a reliable investigation of genetic-geographic population substructure. Here we provide the first substantial dataset of detailed spatial Y-chromosomal haplogroup information in 2085 males collected across the Netherlands and supplemented with previously published data from northern Belgium. We found Y-chromosomal evidence for genetic–geographic population substructure, and several Y-haplogroups demonstrating significant clinal frequency distributions in different directions. By means of prediction surface maps we could visualize (complex) distribution patterns of individual Y-haplogroups in detail. These results highlight the value of a micro-geographic approach and are of great use for forensic and epidemiological investigations and our understanding of the Dutch population history. Moreover, the previously noted absence of genetic-geographic population substructure in the Netherlands based on mitochondrial DNA in contrast to our Y-chromosome results, hints at different population histories for women and men in the Netherlands.
Collapse
|
7
|
Abdeli A, Benhassine T. Paternal lineage of the Berbers from Aurès in Algeria: estimate of their genetic variation. Ann Hum Biol 2019; 46:160-168. [PMID: 30939942 DOI: 10.1080/03014460.2019.1602166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Aurès is a vast territory in the east of Algeria, characterised by its traditional Berber settlement which has preserved its language and its rich history; its name goes back to antiquity and before the Roman conquest it was part of the territory of ancient Numidia. The Chaoui people in this region are one of Algeria's largest Berber groups. Aim: The aims were to investigate the level of genetic diversity of the Berbers of Aurès through the analysis of the paternal gene pool and to estimate the percentage of genetic variation among different geographical regions and linguistic groups from Algeria. Subjects and methods: Twenty-three Y-STRs were genotyped in a sample of 218 unrelated males of the Berbers of Aurès. Algorithms were used to estimate the Y-chromosome haplogroups. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between sample groups. Results: The paternal lineage of this sample of the Aurès region did not exhibit strong signals of differentiation with other samples from North-central, Northwest, and South Algeria. However, significant differences were found within this sample, demonstrating a high degree of heterogeneity. Conclusion: The results demonstrate that Aurès people are isolated and closed, but nevertheless have quite different genetic profiles.
Collapse
Affiliation(s)
- Amine Abdeli
- a Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques , Université des Sciences et de la Technologie Houari Boumediene , Algiers , Algeria.,b Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale , Algiers , Algeria
| | - Traki Benhassine
- a Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques , Université des Sciences et de la Technologie Houari Boumediene , Algiers , Algeria
| |
Collapse
|
8
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
9
|
Technical note: developmental validation of a novel 6-dye typing system with 36 Y-STR loci. Int J Legal Med 2018; 133:1015-1027. [DOI: 10.1007/s00414-018-1864-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|
10
|
Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, de Pancorbo MM, Calafell F. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci Rep 2017; 7:7341. [PMID: 28779148 PMCID: PMC5544771 DOI: 10.1038/s41598-017-07710-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carla García-Fernández
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Neus Font-Porterias
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - María José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Claude Férec
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France.,Université de Bretagne Occidentale, Brest, France.,Etablissement Français du Sang-Bretagne, Brest, France
| | - Karen Rouault
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Susana Jiménez-Moreno
- Forensic and Legal Medicine Area, Department of Pathology and Surgery, University Miguel Hernández, Elche, Spain
| | | | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | | | - Ángel Carracedo
- Genomic Medicine Group, CIBERER- University of Santiago de Compostela, Galician Foundation of Genomic Medicine (SERGAS), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Heraclides A, Bashiardes E, Fernández-Domínguez E, Bertoncini S, Chimonas M, Christofi V, King J, Budowle B, Manoli P, Cariolou MA. Y-chromosomal analysis of Greek Cypriots reveals a primarily common pre-Ottoman paternal ancestry with Turkish Cypriots. PLoS One 2017; 12:e0179474. [PMID: 28622394 PMCID: PMC5473566 DOI: 10.1371/journal.pone.0179474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Genetics can provide invaluable information on the ancestry of the current inhabitants of Cyprus. A Y-chromosome analysis was performed to (i) determine paternal ancestry among the Greek Cypriot (GCy) community in the context of the Central and Eastern Mediterranean and the Near East; and (ii) identify genetic similarities and differences between Greek Cypriots (GCy) and Turkish Cypriots (TCy). Our haplotype-based analysis has revealed that GCy and TCy patrilineages derive primarily from a single gene pool and show very close genetic affinity (low genetic differentiation) to Calabrian Italian and Lebanese patrilineages. In terms of more recent (past millennium) ancestry, as indicated by Y-haplotype sharing, GCy and TCy share much more haplotypes between them than with any surrounding population (7-8% of total haplotypes shared), while TCy also share around 3% of haplotypes with mainland Turks, and to a lesser extent with North Africans. In terms of Y-haplogroup frequencies, again GCy and TCy show very similar distributions, with the predominant haplogroups in both being J2a-M410, E-M78, and G2-P287. Overall, GCy also have a similar Y-haplogroup distribution to non-Turkic Anatolian and Southwest Caucasian populations, as well as Cretan Greeks. TCy show a slight shift towards Turkish populations, due to the presence of Eastern Eurasian (some of which of possible Ottoman origin) Y-haplogroups. Overall, the Y-chromosome analysis performed, using both Y-STR haplotype and binary Y-haplogroup data puts Cypriot in the middle of a genetic continuum stretching from the Levant to Southeast Europe and reveals that despite some differences in haplotype sharing and haplogroup structure, Greek Cypriots and Turkish Cypriots share primarily a common pre-Ottoman paternal ancestry.
Collapse
Affiliation(s)
- Alexandros Heraclides
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Marios Chimonas
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vasilis Christofi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jonathan King
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Panayiotis Manoli
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios A. Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
12
|
Marques SL, Gusmão L, Amorim A, Prata MJ, Alvarez L. Y chromosome diversity in a linguistic isolate (Mirandese, NE Portugal). Am J Hum Biol 2016; 28:671-80. [PMID: 26990174 DOI: 10.1002/ajhb.22849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The purpose of this study was to genetically characterize the male lineages of people who speak Mirandese, an interesting case of a linguistic relict that can still be found in the municipality of Miranda do Douro, NE Portugal. This region lies within the area of the Leonese dialects, which are remnants of the Romance dialects spoken in the Kingdom of Leon currently grouped in the Astur-Leonese linguistic continuum. We intended to disclose affinities with surrounding populations, namely from Spain where the Astur-Leonese is also spoken. METHODS Eighty-eight unrelated males (58 from Miranda and 30 from Bragança, the broad Portuguese region where Miranda is located) were genotyped with the combined use of 17 Y chromosome short tandem repeats (Y-STRs) and a high resolution Y chromosome single nucleotide polymorphism (Y-SNPs) strategy. Moreover, 236 males from Miranda and neighboring regions, previously classified as R-M269, were also genotyped. RESULTS R-P312 was the most frequent haplogroup in the Mirandese, followed by J-12f2.1 and T-M70. The male lineages J-12f2.1 and T-M70 were also well represented, and both were shared with descendants of Sephardic Jews. No signs of diversity reduction were detected. CONCLUSIONS Mirandese speakers display a Y chromosome gene pool that shows a subtle differentiation from neighboring populations, mainly attributable to the assimilation of lineages ascribed to be of Jewish ancestry. Although not revealing signs of geographic/linguistic isolation, no clear affinities with other Astur-Leonese populations were detected. The results suggest that in Miranda language sharing is not accompanied by significant gene flow between populations from both sides of the political border. Am. J. Hum. Biol. 28:671-680, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sofia L Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Antonio Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Luis Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|