1
|
Guo Y, Zhang X, Zhang H, Liu Y, Shi J, Meng H, Chen X, Lan Q, Zhu B. Application of microfluidic technologies in forensic analysis. Electrophoresis 2023; 44:1725-1743. [PMID: 37857551 DOI: 10.1002/elps.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
The application of microfluidic technology in forensic medicine has steadily expanded over the last two decades due to the favorable features of low cost, rapidity, high throughput, user-friendliness, contamination-free, and minimum sample and reagent consumption. In this context, bibliometric methods were adopted to visualize the literature information contained in the Science Citation Index Expanded from 1989 to 2022, focusing on the co-occurrence analysis of forensic and microfluidic topics. A deep interpretation of the literature was conducted based on co-occurrence results, in which microfluidic technologies and their applications in forensic medicine, particularly forensic genetics, were elaborated. The purpose of this review is to provide an impartial evaluation of the utilization of microfluidic technology in forensic medicine. Additionally, the challenges and future trends of implementing microfluidic technology in forensic genetics are also addressed.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yaoshun Liu
- Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, P. R. China
| | - Jianfeng Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Haotian Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xin Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Wen Y, Liu J, Su Y, Chen X, Hou Y, Liao L, Wang Z. Forensic biogeographical ancestry inference: recent insights and current trends. Genes Genomics 2023; 45:1229-1238. [PMID: 37081293 DOI: 10.1007/s13258-023-01387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND As a powerful complement to the paradigmatic DNA profiling strategy, biogeographical ancestry inference (BGAI) plays a significant part in human forensic investigation especially when a database hit or eyewitness testimony are not available. It indicates one's biogeographical profile based on known population-specific genetic variations, and thus is crucial for guiding authority investigations to find unknown individuals. Forensic biogeographical ancestry testing exploits much of the recent advances in the understanding of human genomic variation and improving of molecular biology. OBJECTIVE In this review, recent development of prospective ancestry informative markers (AIMs) and the statistical approaches of inferring biogeographic ancestry from AIMs are elucidated and discussed. METHODS We highlight the research progress of three potential AIMs (i.e., single nucleotide polymorphisms, microhaplotypes, and Y or mtDNA uniparental markers) and discuss the prospects and challenges of two methods that are commonly used in BGAI. CONCLUSION While BGAI for forensic purposes has been thriving in recent years, important challenges, such as ethics and responsibilities, data completeness, and ununified standards for evaluation, remain for the use of biogeographical ancestry information in human forensic investigations. To address these issues and fully realize the value of BGAI in forensic investigation, efforts should be made not only by labs/institutions around the world independently, but also by inter-lab/institution collaborations.
Collapse
Affiliation(s)
- Yufeng Wen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Linchuan Liao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zheng Wang
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China.
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang L, Wang X, Liu D, Wu Y, Feng L, Han C, Liu J, Lu Y, Sotnikov DV, Xu Y, Cheng J. SMART: A Swing-Assisted Multiplexed Analyzer for Point-of-Care Respiratory Tract Infection Testing. BIOSENSORS 2023; 13:228. [PMID: 36831994 PMCID: PMC9954503 DOI: 10.3390/bios13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Respiratory tract infections such as the ongoing coronavirus disease 2019 (COVID-19) has seriously threatened public health in the last decades. The experience of fighting against the epidemic highlights the importance of user-friendly and accessible point-of-care systems for nucleic acid (NA) detection. To realize low-cost and multiplexed point-of-care NA detection, a swing-assisted multiplexed analyzer for point-of-care respiratory tract infection testing (SMART) was proposed to detect multiple respiratory tract pathogens using visible loop-mediated isothermal amplification. By performing hand-swing movements to generate acceleration force to distribute samples into reaction chambers, the design of the SMART system was greatly simplified. By using different format of chips and integrating into a suitcase, this system can be applied to on-site multitarget and multi-sample testing. Three targets including the N and Orf genes of SARS-CoV-2 and the internal control were simultaneously analyzed (limit of detection: 2000 copies/mL for raw sample; 200 copies/mL for extracted sample). Twenty-three clinical samples with eight types of respiratory bacteria and twelve COVID-19 clinical samples were successfully detected. These results indicate that the SMART system has the potential to be further developed as a versatile tool in the diagnosis of respiratory tract infection.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xu Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongchen Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Feng
- CapitalBiotech Technology, Beijing 101111, China
| | - Chunyan Han
- CapitalBiotech Technology, Beijing 101111, China
| | - Jiajia Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Dmitriy V. Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Youchun Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| |
Collapse
|
4
|
Zhao C, Xu H, Fang Y, Zhao M, Lan Q, Chen M, Mei S, Zhu B. Systematic selections and forensic application evaluations of 111 individual identification SNPs in the Chinese Inner Mongolia Manchu group. Front Genet 2022; 13:944580. [PMID: 36134022 PMCID: PMC9483854 DOI: 10.3389/fgene.2022.944580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Single nucleotide polymorphism (SNP) possesses a promising application in forensic individual identification due to its wide distribution in the human genome and the ability to carry out the genotyping of degraded biological samples by designing short amplicons. Some commonly used individual identification SNPs are less polymorphic in East Asian populations. In order to improve the individual identification efficiencies in East Asian populations, SNP genetic markers with relatively higher polymorphisms were selected from the 1,000 Genome Project phase III database in East Asian populations. A total of 111 individual identification SNPs (II-SNPs) with the observed heterozygosity values greater than 0.4 were screened in East Asian populations, and then, the forensic efficiencies of these selected SNPs were also evaluated in Chinese Inner Mongolia Manchu group. The observed heterozygosity and power of discrimination values at 111 II-SNPs in the Inner Mongolia Manchu group ranged from 0.4011 to 0.7005, and 0.5620 to 0.8025, respectively, and the average value of polymorphism information content was greater than 0.3978. The cumulative match probability and combined probability of exclusion values at II-SNPs were 7.447E-51 and 1-4.17E-12 in the Inner Mongolia Manchu group, respectively. The accumulative efficiency results indicated that the set of II-SNPs could be used as a potential tool for forensic individual identification and parentage testing in the Manchu group. The sequencing depths ranged from 781× to 12374×. And the mean allele count ratio and noise level were 0.8672 and 0.0041, respectively. The sequencing results indicated that the SNP genetic marker detection based on the massively parallel sequencing technology for SNP genetic markers had high sequencing performance and could meet the sequencing requirements of II-SNPs in the studied group.
Collapse
Affiliation(s)
- Congying Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Man Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shuyan Mei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Bofeng Zhu,
| |
Collapse
|
5
|
Carvalho J, Yadav S, Garrido-Maestu A, Azinheiro S, Trujillo I, Barros-Velázquez J, Prado M. Evaluation of simple sequence repeats (SSR) and single nucleotide polymorphism (SNP)-based methods in olive varieties from the Northwest of Spain and potential for miniaturization. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100038. [PMID: 35415648 PMCID: PMC8991621 DOI: 10.1016/j.fochms.2021.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/10/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
SSR- and SNP-based methods were evaluated for the identification of olive varieties. SNP identification was performed for the first time for two autochthonous varieties. The potential for future miniaturization of the genotyping methods was evaluated. Allele-specific PCR provided the best results for the tested olive varieties.
Miniaturization of DNA-based techniques can bring interesting advantages for food analysis, such as portability of complex analytical procedures. In the olive oil industry, miniaturization can be particularly interesting for authenticity and traceability applications, through in situ control of raw materials before production and/or the final products. However, variety identification is challenging, and implementation on miniaturized settings must be carefully evaluated, starting from the selected analytical approach. In this work, SSR- and SNP-based genotyping strategies were investigated for the identification and differentiation of two olive varieties from the Northwest of Spain. For the selected SNPs two genotyping methods were tested: real-time allele-specific PCR and high resolution melting analysis. These methods were compared and evaluated regarding their potential for integration in a microfluidic device. Both SNP-based methods proved to be successful for identification of the selected varieties, however real-time allele-specific PCR was the one that achieved the best results when analyzing mixtures, allowing the identification of both monovarietal samples and mixtures of the varieties tested with up to 25%.
Collapse
|
6
|
Hajialyani M, Hosseinzadeh L, Wu JJ. Microfluidics-Integrated Sensors toward Rapid Detection of Single Nucleotide Variations. ACS OMEGA 2021; 6:24297-24303. [PMID: 34604613 PMCID: PMC8482391 DOI: 10.1021/acsomega.1c02563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 05/03/2023]
Abstract
Rapid detection of single nucleotide variations (SNVs) is of critical importance to early diagnosis of several diseases and the prediction of diverse responses to a specific treatment. Based on the information published in the literature, discrimination of SNVs is a developing area of study with great research enthusiasm and is also an area that can benefit from microfluidics-integrated designs. This review provides a brief overview of different microfluidics-based strategies for rapid detection of SNVs and mismatched bases. Sensors based on various microfluidic formats, such as paper-based microfluidic biosensors, droplet-based microfluidic systems, and magnetic bead-based microfluidic biosensors, have been discussed with respect to their specific pros and cons for SNV detection. These systems have shown promise for distributed on-site diagnostics in personalized medicine.
Collapse
Affiliation(s)
- Marziyeh Hajialyani
- Department
of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| | - Leila Hosseinzadeh
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 6715847141 Kermanshah, Iran
| | - Jie Jayne Wu
- Department
of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996-4519, United States
| |
Collapse
|
7
|
Khan MYA, Omar AI, He Y, Chen S, Zhang S, Xiao W, Zhang Y. Prevalence of nine genetic defects in Chinese Holstein cattle. Vet Med Sci 2021; 7:1728-1735. [PMID: 33991412 PMCID: PMC8464240 DOI: 10.1002/vms3.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022] Open
Abstract
Worldwide use of elite sires has caused inbreeding accumulation and high frequencies of genetic defects in dairy cattle populations. In recent years, several genetic defect genes or haplotypes have been identified in Holstein cattle. A rapid and reliable microfluidic chip with Kompetitive allele-specific PCR (KASP) assay was developed in our previous study for the detection of heterozygotes at eight genetic defect loci of bovine leukocyte adhesion deficiency (BLAD), Brachyspina syndrome (BS), complex vertebral malformation (CVM), Holstein haplotype 1 (HH1), Holstein haplotype 3 (HH3), Holstein haplotype 4 (HH4), Holstein haplotype 5 (HH5) and haplotype for cholesterol deficiency (HCD). This study aimed to extend that assay to include a newly identified genetic defect of Holstein haplotype 6 (HH6) and to estimate the frequencies of carriers for each of the nine genetic defects in six Chinese Holstein herds. Of the 1633 cows, carrier frequencies of the genetic defects were 6.92%, 5.76%, 4.46%, 4.30%, 3.62%, 2.94%, 1.86% and 0.37% for HH1, HH3, CVM, HH5, HCD, BS, HH6 and BLAD, respectively. No carrier was found for HH4. Notably, 27.43% of cows carried at least one genetic defect, while 2.27% and 0.12% of cows carried double and triple genetic defect alleles, respectively. The existence of genetic defects calls for routine molecular testing and effective management of genetic defects by avoiding carrier-to-carrier mating in production herds and eliminating or at least reducing the frequency of the defective alleles through marker-assisted selection in breeding herds.
Collapse
Affiliation(s)
- Md. Yousuf Ali Khan
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Abdullah I. Omar
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuwei He
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaohu Chen
- Dairy Data Center of China Dairy AssociationBeijingChina
| | - Shengli Zhang
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Wei Xiao
- Beijing Animal Husbandry StationBeijingChina
| | - Yi Zhang
- National Engineering Laboratory for Animal BreedingKey Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Next generation sequencing of a set of ancestry-informative SNPs: ancestry assignment of three continental populations and estimating ancestry composition for Mongolians. Mol Genet Genomics 2020; 295:1027-1038. [PMID: 32206883 DOI: 10.1007/s00438-020-01660-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022]
Abstract
When traditional short tandem repeat profiling fails to provide valuable information to arrest the criminal, forensic ancestry inference of the biological samples left at the crime scene will probably offer investigative leads and facilitate the investigation process of the case. That is why there are consistent efforts in developing panels for ancestry inference in forensic science. Presently, a 30-plex next generation sequencing-based assay was exploited in this study by assembling well-differentiated single nucleotide polymorphisms for ancestry assignment of unknown individuals from three continental populations (African, European and East Asian). And meanwhile, relatively balanced population-specific differentiation values were maintained to avoid the over-estimation or under-estimation of co-ancestry proportions in individuals with admixed ancestry. The principal component analysis and STRUCTURE analysis of reference populations, test populations and the studied Mongolian group indicated that the novel assay was efficient enough to determine the ancestry origin of an unknown individual from the three continental populations. Besides, ancestry membership proportion estimations for the Mongolian group revealed that a large fraction of the ancestry was contributed by East Asian genetic component (approximately 83.9%), followed by European (approximately 12.6%) and African genetic components (approximately 3.5%), respectively. And next generation sequencing technology applied in this study offers possibility to incorporate more single nucleotide polymorphisms for individual identification and phenotype prediction into the same assay to provide as many as possible investigative clues in the future.
Collapse
|
9
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|