1
|
van der Gaag KJ, Weiler N, de Jong EAC, Hoogenboom J, van Oers P, de Leeuw RH, Graaf ESM, Kraaijenbrink T, Theelen J, Sijen T. Validation of the IDseek® OmniSTR™ Global Autosomal STR Profiling kit, reverse complement PCR as an improved tool/method for routine massively parallel sequencing of short tandem repeats. Forensic Sci Int Genet 2024; 74:103174. [PMID: 39549676 DOI: 10.1016/j.fsigen.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Massively Parallel Sequencing (MPS) has gained interest in the forensic community over the past decade. Most of the published MPS methods focus on specialty applications intended for use in a limited number of samples with protocols that are relatively laborious. Recent developments using Reverse-Complement PCR enable an efficient MPS protocol suited for routine analysis of high numbers of samples. This method is implemented in the IDseek® OmniSTR™ Global Autosomal STR Profiling kit (Nimagen) for sequencing 28 of the most commonly used forensic autosomal STRs, one Y-chromosomal STR and Amelogenin. This study describes the validation of this kit and focuses on sensitivity, inhibitor tolerance, sequence variation detection and performance with mixtures up to 5 contributors. Results are compared to a Capillary Electrophoresis method (the PowerPlex® Fusion 6 C system, Promega) and the first commercial forensic MPS kit (ForenSeq™ DNA Signature prep, Qiagen) and for a concordance study with data from the Powerseq® MPS kit as well. Analysis settings in FDSTools are deduced and discussed, and an almost completely automated analysis is achieved. Using FDSTools noise correction, contributions in a mixture down to a level of 1.5 % of the major allele of a marker can be detected.
Collapse
Affiliation(s)
- Kristiaan J van der Gaag
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands.
| | - Natalie Weiler
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands
| | - Erik A C de Jong
- NimaGen B.V., Hogelandseweg 88, Nijmegen 6545 AB, the Netherlands
| | - Jerry Hoogenboom
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands
| | - Pieter van Oers
- NimaGen B.V., Hogelandseweg 88, Nijmegen 6545 AB, the Netherlands
| | - Rick H de Leeuw
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Elisabeth S M Graaf
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands
| | - Thirsa Kraaijenbrink
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Joop Theelen
- NimaGen B.V., Hogelandseweg 88, Nijmegen 6545 AB, the Netherlands
| | - Titia Sijen
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands; University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Gettings KB, Tillmar A, Sturk-Andreaggi K, Marshall C. Review of SNP assays for disaster victim identification: Cost, time, and performance information for decision-makers. J Forensic Sci 2024; 69:1546-1557. [PMID: 39021258 DOI: 10.1111/1556-4029.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
In mass disaster events, forensic DNA laboratories may be called upon to quickly pivot their operations toward identifying bodies and reuniting remains with family members. Ideally, laboratories have considered this possibility in advance and have a plan in place. Compared with traditional short tandem repeat (STR) typing, single nucleotide polymorphisms (SNPs) may be better suited to these disaster victim identification (DVI) scenarios due to their small genomic target size, resulting in an improved success rate in degraded DNA samples. As the landscape of technology has shifted toward DNA sequencing, many forensic laboratories now have benchtop instruments available for massively parallel sequencing (MPS), facilitating this operational pivot from routine forensic STR casework to DVI SNP typing. Herein, we present the commercially available SNP sequencing assays amenable to DVI, we use data simulations to explore the potential for kinship prediction from SNP panels of varying sizes, and we give an example DVI scenario as context for presenting the matrix of considerations: kinship predictive potential, cost, and throughput of current SNP assay options. This information is intended to assist laboratories in choosing a SNP system for disaster preparedness.
Collapse
Affiliation(s)
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 10 Defense Health Agency, Dover Air Force Base, Dover, Delaware, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, Virginia, USA
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), 10 Defense Health Agency, Dover Air Force Base, Dover, Delaware, USA
- Forensic Science Program, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
3
|
Leontidou K, Abad-Recio IL, Rubel V, Filker S, Däumer M, Thielen A, Lanzén A, Stoeck T. Simultaneous analysis of seven 16S rRNA hypervariable gene regions increases efficiency in marine bacterial diversity detection. Environ Microbiol 2023; 25:3484-3501. [PMID: 37974518 DOI: 10.1111/1462-2920.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Environmental DNA sequencing is the gold standard to reveal microbial community structures. In most applications, a one-fragment PCR approach is applied to amplify a taxonomic marker gene, usually a hypervariable region of the 16S rRNA gene. We used a new reverse complement (RC)-PCR-based assay that amplifies seven out of the nine hypervariable regions of the 16S rRNA gene, to interrogate bacterial communities in sediment samples collected from different coastal marine sites with an impact gradient. In parallel, we employed a traditional one-fragment analysis of the hypervariable V3-V4 region to investigate whether the RC-PCR reveals more of the 'unseen' diversity obtained by the one-fragment approach. As a benchmark for the full deck of diversity, we subjected the samples to PCR-free metagenomic sequencing. None of the two PCR-based approaches recorded the full taxonomic repertoire obtained from the metagenomics datasets. However, the RC-PCR approach detected 2.8 times more bacterial genera compared to the near-saturation sequenced V3-V4 samples. RC-PCR is an ideal compromise between the standard one-fragment approach and metagenomics sequencing and may guide future environmental sequencing studies, in which bacterial diversity is a central subject.
Collapse
Affiliation(s)
- Kleopatra Leontidou
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ion L Abad-Recio
- Marine Ecosystems Functioning, AZTI, Marine Research, Basque Research and Technology Alliance, Pasia, Gipuzkoa, Spain
| | - Verena Rubel
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Sabine Filker
- Molecular Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Martin Däumer
- SeqIT, Laboratory for Molecular Diagnostics and Services, Kaiserslautern, Germany
| | - Alexander Thielen
- SeqIT, Laboratory for Molecular Diagnostics and Services, Kaiserslautern, Germany
| | - Anders Lanzén
- Marine Ecosystems Functioning, AZTI, Marine Research, Basque Research and Technology Alliance, Pasia, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
4
|
Budowle B, Arnette A, Sajantila A. A cost-benefit analysis for use of large SNP panels and high throughput typing for forensic investigative genetic genealogy. Int J Legal Med 2023; 137:1595-1614. [PMID: 37341834 PMCID: PMC10421786 DOI: 10.1007/s00414-023-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023]
Abstract
Next-generation sequencing (NGS), also known as massively sequencing, enables large dense SNP panel analyses which generate the genetic component of forensic investigative genetic genealogy (FIGG). While the costs of implementing large SNP panel analyses into the laboratory system may seem high and daunting, the benefits of the technology may more than justify the investment. To determine if an infrastructural investment in public laboratories and using large SNP panel analyses would reap substantial benefits to society, a cost-benefit analysis (CBA) was performed. This CBA applied the logic that an increase of DNA profile uploads to a DNA database due to a sheer increase in number of markers and a greater sensitivity of detection afforded with NGS and a higher hit/association rate due to large SNP/kinship resolution and genealogy will increase investigative leads, will be more effective for identifying recidivists which in turn reduces future victims of crime, and will bring greater safety and security to communities. Analyses were performed for worst case/best case scenarios as well as by simulation sampling the range spaces with multiple input values simultaneously to generate best estimate summary statistics. This study shows that the benefits, both tangible and intangible, over the lifetime of an advanced database system would be huge and can be projected to be for less than $1 billion per year (over a 10-year period) investment can reap on average > $4.8 billion in tangible and intangible cost-benefits per year. More importantly, on average > 50,000 individuals need not become victims if FIGG were employed, assuming investigative associations generated were acted upon. The benefit to society is immense making the laboratory investment a nominal cost. The benefits likely are underestimated herein. There is latitude in the estimated costs, and even if they were doubled or tripled, there would still be substantial benefits gained with a FIGG-based approach. While the data used in this CBA are US centric (primarily because data were readily accessible), the model is generalizable and could be used by other jurisdictions to perform relevant and representative CBAs.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.
- Radford University Forensic Science Institute, Radford University, Radford, VA, USA.
| | - Andrew Arnette
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, USA
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
5
|
Moorlag SJCFM, Coolen JPM, van den Bosch B, Jin EHM, Buil JB, Wertheim HFL, Melchers WJG. Targeting the 16S rRNA Gene by Reverse Complement PCR Next-Generation Sequencing: Specific and Sensitive Detection and Identification of Microbes Directly in Clinical Samples. Microbiol Spectr 2023; 11:e0448322. [PMID: 37227289 PMCID: PMC10269728 DOI: 10.1128/spectrum.04483-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The detection and accurate identification of bacterial species in clinical samples are crucial for diagnosis and appropriate antibiotic treatment. To date, sequencing of the 16S rRNA gene has been widely used as a complementary molecular approach when identification by culture fails. The accuracy and sensitivity of this method are highly affected by the selection of the 16S rRNA gene region targeted. In this study, we assessed the clinical utility of 16S rRNA reverse complement PCR (16S RC-PCR), a novel method based on next-generation sequencing (NGS), for the identification of bacterial species. We investigated the performance of 16S RC-PCR on 11 bacterial isolates, 2 polymicrobial community samples, and 59 clinical samples from patients suspected of having a bacterial infection. The results were compared to culture results, if available, and to the results of Sanger sequencing of the 16S rRNA gene (16S Sanger sequencing). By 16S RC-PCR, all bacterial isolates were accurately identified to the species level. Furthermore, in culture-negative clinical samples, the rate of identification increased from 17.1% (7/41) to 46.3% (19/41) when comparing 16S Sanger sequencing to 16S RC-PCR. We conclude that the use of 16S RC-PCR in the clinical setting leads to an increased sensitivity of detection of bacterial pathogens, resulting in a higher number of diagnosed bacterial infections, and thereby can improve patient care. IMPORTANCE The identification of the causative infectious pathogen in patients suspected of having a bacterial infection is essential for diagnosis and the start of appropriate treatment. Over the past 2 decades, molecular diagnostics have improved the ability to detect and identify bacteria. However, novel techniques that can accurately detect and identify bacteria in clinical samples and that can be implemented in clinical diagnostics are needed. Here, we demonstrate the clinical utility of bacterial identification in clinical samples by a novel method called 16S RC-PCR. Using 16S RC-PCR, we reveal a significant increase in the number of clinical samples in which a potentially clinically relevant pathogen is identified compared to the commonly used 16S Sanger method. Moreover, RC-PCR allows automation and is well suited for implementation in a diagnostic laboratory. In conclusion, the implementation of this method as a diagnostic tool is expected to result in an increased number of diagnosed bacterial infections, and in combination with adequate treatment, this could improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Simone J. C. F. M. Moorlag
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Bart van den Bosch
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Elisabeth Hui-Mei Jin
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Heiman F. L. Wertheim
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Maschietto C, Otto G, Rouzé P, Debortoli N, Bihin B, Nyinkeu L, Denis O, Huang TD, Mullier F, Bogaerts P, Degosserie J. Minimal requirements for ISO15189 validation and accreditation of three next generation sequencing procedures for SARS-CoV-2 surveillance in clinical setting. Sci Rep 2023; 13:6934. [PMID: 37117393 PMCID: PMC10140720 DOI: 10.1038/s41598-023-34088-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Rapid and recurrent breakthroughs of new SARS-CoV-2 strains (variants) have prompted public health authorities worldwide to set up surveillance networks to monitor the circulation of variants of concern. The use of next-generation sequencing technologies has raised the need for quality control assessment as required in clinical laboratories. The present study is the first to propose a validation guide for SARS-CoV-2 typing using three different NGS methods fulfilling ISO15189 standards. These include the assessment of the risk, specificity, accuracy, reproducibility, and repeatability of the methods. Among the three methods used, two are amplicon-based involving reverse transcription polymerase chain reaction (Artic v3 and Midnight v1) on Oxford Nanopore Technologies while the third one is amplicon-based using reverse complement polymerase chain reaction (Nimagen) on Illumina technology. We found that all methods met the quality requirement (e.g., 100% concordant typing results for accuracy, reproducibility, and repeatability) for SARS-CoV-2 typing in clinical setting. Additionally, the typing results emerging from each of the three sequencing methods were compared using three widely known nomenclatures (WHO, Pangolineage, and Nextclade). They were also compared regarding single nucleotide variations. The outcomes showed that Artic v3 and Nimagen should be privileged for outbreak investigation as they provide higher quality results for samples that do not meet inclusion criteria for analysis in a clinical setting. This study is a first step towards validation of laboratory developed NGS tests in the context of the new European regulation for medical devices and in vitro diagnostics.
Collapse
Affiliation(s)
- Céline Maschietto
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
| | - Gaëtan Otto
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
| | - Pauline Rouzé
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- Laboratory of Microbiology, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Nicolas Debortoli
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- Namur Molecular Tech, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Lesly Nyinkeu
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
- Namur Molecular Tech, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Olivier Denis
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
- Laboratory of Microbiology, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Te-Din Huang
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
- Laboratory of Microbiology, CHU UCL Namur, 5530, Yvoir, Belgium
| | - François Mullier
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium
| | - Pierre Bogaerts
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium
- Laboratory of Microbiology, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Jonathan Degosserie
- Department of Laboratory Medicine, UCLouvain, CHU UCL Namur, 5530, Yvoir, Belgium.
- COVID-19 Federal Testing Platform Bis, CHU UCL Namur & UNamur, 5530, Yvoir, Belgium.
- Namur Molecular Tech, CHU UCL Namur, 5530, Yvoir, Belgium.
| |
Collapse
|
7
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
8
|
|
9
|
Zhao X, Fan Y, Zeye MMJ, He W, Wen D, Wang C, Li J, Hua Z. A novel set of short microhaplotypes based on non-binary SNPs for forensic challenging samples. Int J Legal Med 2021; 136:43-53. [PMID: 34654943 DOI: 10.1007/s00414-021-02719-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023]
Abstract
Short tandem repeats (STRs) are the most widely used genetic markers in forensic application, but they are not ideal genetic markers for the analysis of forensic challenging samples such as highly degraded or unbalanced mixed samples because of their relatively large amplicons and stutter peaks. In this study, we developed a set of short microhaplotypes based on non-binary SNPs with molecular extent sizes no longer than 60 bases and genotyped 100 unrelated individuals from northern Han groups. Our results showed this panel has similar discrimination power to STR kits, as the combined random match probability (CMP) reached 1.396 × 10-22 and mean effective number of alleles (Ae) was 3.59. The cumulative probability of exclusion for duos (CPE-duos) was 0.999919 and the cumulative probability of exclusion for trios (CPE-trios) was 0.9999999987, suggesting this panel could be applied for forensic personal identification and parentage testing independently. Population differentiation in 26 populations from the 1000 Genomes Project indicated this panel could distinguish populations from Africa, East Asia, South Asia, America, and Europe. These microhaplotypes based on non-binary SNPs have short amplicons, good discrimination power, no stutter artifacts, and have great potential in detection of highly degraded and unbalanced mixtures for personal identification, paternity testing, and ancestry inference.
Collapse
Affiliation(s)
- Xingchun Zhao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.,National Engineering Laboratory for Forensic Science, Beijing, 100038, China
| | - Yang Fan
- National Engineering Laboratory for Forensic Science, Beijing, 100038, China
| | - Moutanou Modeste Judes Zeye
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Wei He
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province, 410013, People's Republic of China.
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
10
|
Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci Int Genet 2021; 54:102538. [PMID: 34265517 DOI: 10.1016/j.fsigen.2021.102538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Research on ancient and forensic DNA is related in many ways, and the two fields must deal with similar obstacles. Therefore, communication between these two communities has the potential to improve results in both research fields. Here, we present the insights gained in the ancient DNA community with regard to analyzing DNA from aged skeletal material and the potential use of the developed protocols in forensic work. We discuss the various steps, from choosing samples for DNA extraction to deciding between classical PCR amplification and massively parallel sequencing approaches. Based on the progress made in ancient DNA analyses combined with the requirements of forensic work, we suggest that there is substantial potential for incorporating ancient DNA approaches into forensic protocols, a process that has already begun to a considerable extent. However, taking full advantage of the experiences gained from ancient DNA work will require comparative studies by the forensic DNA community to tailor the methods developed for ancient samples to the specific needs of forensic studies and case work. If successful, in our view, the benefits for both communities would be considerable.
Collapse
Affiliation(s)
- Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Jiri Sneberger
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Department of the History of the Middle Ages of Museum of West Bohemia, Kopeckeho sady 2, Pilsen 30100, Czech Republic; Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague 18086, Czech Republic
| | - Martin Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Biologicals s.r.o., Sramkova 315, Ricany 25101, Czech Republic
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7 17000, Czech Republic; Institute of Legal Medicine, Bulovka Hospital, Prague, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
11
|
Yang TW, Li YH, Chou CF, Lai FP, Chien YH, Yin HI, Lee TT, Hwa HL. DNA mixture interpretation using linear regression and neural networks on massively parallel sequencing data of single nucleotide polymorphisms. AUST J FORENSIC SCI 2021. [DOI: 10.1080/00450618.2020.1807050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ta-Wei Yang
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
| | - Yi-Hao Li
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Fu Chou
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Fei-Pei Lai
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-I Yin
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsui-Ting Lee
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Lin Hwa
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Li J, Lin L, Jiang B, Wang C, Zeye MMJ, Wen D, He W, Qu W, Liu Y, Zha L. An 18 Multi-InDels panel for analysis of highly degraded forensic biological samples. Electrophoresis 2021; 42:1143-1152. [PMID: 33382915 DOI: 10.1002/elps.202000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022]
Abstract
DNA genotyping from trace and highly degraded biological samples is one of the most significant challenges of forensic DNA identification. There is a lack of simple and effective methods for genotyping highly degraded samples. In this study, a multiple loci insertion/deletion polymorphisms (Multi-InDels) panel was designed for detecting 18 autosomal Multi-InDels through capillary electrophoresis (CE) with amplicon sizes no longer than 125 bp. Studies of sensitivity, degradation, and species specificity were performed and a population study was carried out using 192 samples from Han populations in Hunan province in the south of China. The combined random match probability (CMP) of these 18 Multi-InDels was 3.23 × 10-12 and the cumulative probability of exclusion (CPE) was 0.9989, suggesting this panel could be used independently for human identification and could provide efficient supporting information for parentage testing. Complete profiles were obtained from as low as 62.5 pg of total input DNA after increasing the number of PCR cycles. Moreover, all alleles were detected from artificially highly degraded DNA after 80 min of boiling water bath treatment. This 18 Multi-InDels panel is simple, fast, and effective for the forensic analysis of highly degraded DNA.
Collapse
Affiliation(s)
- Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Lin Lin
- Reproductive Medicine Center, Fujian Maternal and Child Health Care Hospital, Fuzhou, Fujian, P. R. China
| | - Bowei Jiang
- The first Research Institute of the Ministry of public security P.R.C., Beijing, P. R. China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Moutanou Modeste Judes Zeye
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Wei He
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Weifeng Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Ying Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, P. R. China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|