1
|
Mlynek KD, Toothman RG, Martinez EE, Qiu J, Richardson JB, Bozue JA. Mutation of wbtJ, a N-formyltransferase involved in O-antigen synthesis, results in biofilm formation, phase variation and attenuation in Francisella tularensis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001437. [PMID: 38421161 PMCID: PMC10924466 DOI: 10.1099/mic.0.001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Elsie E. Martinez
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, USAMRIID, Frederick, MD, USA
| | | | - Joel A. Bozue
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
2
|
Virulence of Francisella tularensis Subspecies holarctica Biovar japonica and Phenotypic Change during Serial Passages on Artificial Media. Microorganisms 2020; 8:microorganisms8121881. [PMID: 33261098 PMCID: PMC7760542 DOI: 10.3390/microorganisms8121881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis (F. tularensis) is the etiological agent of the zoonotic disease tularemia. F. tularensis subspecies holarctica biovar japonica has rarely been isolated in Japan and is considered to have moderate virulence, although the biological properties of fresh isolates have not been analyzed in detail. Here, we analyzed the virulence of two strains of F. tularensis subspecies holarctica biovar japonica (NVF1 and KU-1) and their phenotypic stability during serial passages in Eugon chocolate agar (ECA) and Chamberlain's chemically defined medium (CDM) based agar (CDMA). C57BL/6 mice intradermally inoculated with 101 colony-forming units of NVF1 or KU-1 died within 9 days, with a median time to death of 7.5 and 7 days, respectively. Both NVF1 and KU-1 strains passaged on ECA 10 times had comparable virulence prior to passaging, whereas strains passaged on ECA 20 times and on CDMA 50 times were attenuated. Attenuated strains had decreased viability in 0.01% H2O2 and lower intracellular growth rates, suggesting both properties are important for F. tularensis virulence. Additionally, passage on ECA of the KU-1 strains altered lipopolysaccharide antigenicity and bacterial susceptibility to β-lactam antibiotics. Our data demonstrate F. tularensis strain virulence in Japan and contribute to understanding phenotypic differences between natural and laboratory environments.
Collapse
|
3
|
Biot FV, Bachert BA, Mlynek KD, Toothman RG, Koroleva GI, Lovett SP, Klimko CP, Palacios GF, Cote CK, Ladner JT, Bozue JA. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness. Front Microbiol 2020; 11:593542. [PMID: 33193267 PMCID: PMC7661474 DOI: 10.3389/fmicb.2020.593542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2020] [Indexed: 11/15/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is capable of causing disease in a multitude of mammals and remains a formidable human pathogen due to a high morbidity, low infectious dose, lack of a FDA approved vaccine, and ease of aerosolization. For these reasons, there is concern over the use of F. tularensis as a biological weapon, and, therefore, it has been classified as a Tier 1 select agent. Fluoroquinolones and aminoglycosides often serve as the first line of defense for treatment of tularemia. However, high levels of resistance to these antibiotics has been observed in gram-negative bacteria in recent years, and naturally derived resistant Francisella strains have been described in the literature. The acquisition of antibiotic resistance, either natural or engineered, presents a challenge for the development of medical countermeasures. In this study, we generated a surrogate panel of antibiotic resistant F. novicida and Live Vaccine Strain (LVS) by selection in the presence of antibiotics and characterized their growth, biofilm capacity, and fitness. These experiments were carried out in an effort to (1) assess the fitness of resistant strains; and (2) identify new targets to investigate for the development of vaccines or therapeutics. All strains exhibited a high level of resistance to either ciprofloxacin or streptomycin, a fluoroquinolone and aminoglycoside, respectively. Whole genome sequencing of this panel revealed both on-pathway and off-pathway mutations, with more mutations arising in LVS. For F. novicida, we observed decreased biofilm formation for all ciprofloxacin resistant strains compared to wild-type, while streptomycin resistant isolates were unaffected in biofilm capacity. The fitness of representative antibiotic resistant strains was assessed in vitro in murine macrophage-like cell lines, and also in vivo in a murine model of pneumonic infection. These experiments revealed that mutations obtained by these methods led to nearly all ciprofloxacin resistant Francisella strains tested being completely attenuated while mild attenuation was observed in streptomycin resistant strains. This study is one of the few to examine the link between acquired antibiotic resistance and fitness in Francisella spp., as well as enable the discovery of new targets for medical countermeasure development.
Collapse
Affiliation(s)
- Fabrice V Biot
- Institut de Recherche Biomédicale des Armées, Département de Biologie des Agents Transmissibles, Unité de Bactériologie/UMR_MD1, Brétigny-sur-Orge, France
| | - Beth A Bachert
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Galina I Koroleva
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Sean P Lovett
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Gustavo F Palacios
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Jason T Ladner
- Center for Genome Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, United States
| |
Collapse
|