1
|
Chen X, Xu H, Lin Y, Zhu B. Forensic stability evaluation of selected miRNA and circRNA markers in human bloodstained samples exposed to different environmental conditions. Forensic Sci Int 2024; 362:112148. [PMID: 39094222 DOI: 10.1016/j.forsciint.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Recently, RNA markers have been used to identify tissue origins of different kinds of body fluids. Herein, circRNA and miRNA markers were carried out to examine the presence or absence of peripheral blood (PB) in bloodstained samples exposed to different external environmental conditions, which mimicked PB samples left at the crime scenes. PB samples were placed on sterile swabs and then exposed to different high temperatures (37°C, 55°C and 95°C) and ultraviolet light irradiation for 0 d, 0.5 d, 1 d, 3 d, and 7 d, ultra-low and low temperatures (-80°C, -20°C, and 4°C) for 30 d, 180 d and 365 d and different kinds of disinfectants. Total RNA was extracted from bloodstained samples under the above different conditions, and the expressions of target RNAs (including miR16-5p, miR451a, circ0000095, and two reference genes RNU6b and 18 S rRNA) were detected by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. Results showed that these selected RNA markers could be successfully measured at all observation points with their unique degradation rates, which exhibited relative stability in degraded bloodstained samples exposed to different environmental conditions. This study provides insights into the applications of these studied miRNA and circRNA markers in forensic science.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yifeng Lin
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Stefanovic F, Brown LG, MacDonald J, Bammler T, Rinchai D, Nguyen S, Zeng Y, Shinkawa V, Adams K, Chausabel D, Berthier E, Haack AJ, Theberge AB. Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609519. [PMID: 39229214 PMCID: PMC11370555 DOI: 10.1101/2024.08.24.609519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Remote research studies are an invaluable tool for reaching populations in geographical regions with limited access to large medical centers or universities. To expand the remote study toolkit, we have previously developed homeRNA, which allows for at-home self-collection and stabilization of blood and demonstrated the feasibility of using homeRNA in high temperature climates. Here, we expand upon this work through a systematic study exploring the effects of high temperature on RNA integrity through in-lab and field experiments. Compared to the frozen controls (overall mean RIN of 8.2, n = 8), samples kept at 37°C for 2, 4, and 8 days had mean RINs of 7.6, 5.9, and 5.2 (n = 3), respectively, indicating that typical shipping conditions (~2 days) yield samples suitable for downstream RNA sequencing. Shorter time intervals (6 hours) resulted in minimal RNA degradation (median RIN of 6.4, n = 3) even at higher temperatures (50°C) compared to the frozen control (mean RIN of 7.8, n = 3). Additionally, we shipped homeRNA-stabilized blood from a single donor to 14 different states and back during the summer with continuous temperature probes (7.1 median RIN, n = 42). Samples from all locations were analyzed with 3' mRNA-seq to assess differences in gene counts, with the transcriptomic data suggesting that there was no preferential degradation of transcripts as a result of different shipping times, temperatures, and regions. Overall, our data support that homeRNA can be used in elevated temperature conditions, enabling decentralized sample collection for telemedicine, global health, and clinical research.
Collapse
Affiliation(s)
- Filip Stefanovic
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Darawan Rinchai
- Department of Infectious Diseases, St Jude’s Children Research Hospital, TN, Memphis 38105, United States
| | - Serena Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Victoria Shinkawa
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Karen Adams
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Institute of Translational Health Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Damien Chausabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Dinmeung N, Sirisathitkul Y, Sirisathitkul C. Colorimetric parameters for bloodstain characterization by smartphone. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1080/25765299.2023.2194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Natthinee Dinmeung
- Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Yaowarat Sirisathitkul
- Division of Computer Engineering and Electronics, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat, Thailand
| | | |
Collapse
|
4
|
Hänggi NV, Bleka Ø, Haas C, Fonneløp AE. Quantitative PCR analysis of bloodstains of different ages. Forensic Sci Int 2023; 350:111785. [PMID: 37527614 DOI: 10.1016/j.forsciint.2023.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
An accurate method to estimate the age of a stain or the time since deposition (TsD) would represent an important tool in police investigations for evaluating the true relevance of a stain. In this study, two laboratories reproduced an mRNA-based method for TsD estimation published by another group. The qPCR-based assay includes four transcripts (B2M, LGALS2, CLC, and S100A12) and showed preferential degradation of the 5' end over the 3' end. In this study, the blood-specific marker ALAS2 was added to examine whether it would show the same degradation pattern. Based on our qPCR data several elastic net models with different penalty combinations were created, using training data from the two laboratories separately and combined. Each model was then used to estimate the age of bloodstains from two independent test sets each laboratory had prepared. The elastic net model built on both datasets with training samples up to 320 days old displayed the best prediction performance across all test samples (MAD=18.9 days). There was a substantial difference in the prediction performance for the two laboratories: Restricting TsD to up to 100 days for test data, one laboratory obtained an MAD of 2.0 days when trained on its own data, whereas the other laboratory obtained an MAD of 15 days.
Collapse
Affiliation(s)
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
5
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
6
|
Schulze Johann K, Bauer H, Wiegand P, Pfeiffer H, Vennemann M. Whole-genome sequencing of artificial single-nucleotide variants induced by DNA degradation in biological crime scene traces. Int J Legal Med 2023; 137:33-45. [PMID: 36352329 PMCID: PMC9816238 DOI: 10.1007/s00414-022-02911-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify artificial single-nucleotide variants (SNVs) in degraded trace DNA samples. In a preliminary study, blood samples were stored for up to 120 days and whole-genome sequencing was performed using the Snakemake workflow dna-seq-gatk-variant-calling to identify positions that vary between the time point 0 sample and the aged samples. In a follow-up study on blood and saliva samples stored under humid and dry conditions, potential marker candidates for the estimation of the age of a blood stain (= time since deposition) were identified. Both studies show that a general decrease in the mean fragment size of the libraries over time was observed, presumably due to the formation of abasic sites during DNA degradation which are more susceptible to strand breaks by mechanical shearing of DNA. Unsurprisingly, an increase in the number of failed genotype calls (no coverage) was detected over time. Both studies indicated the presence of artificial SNVs with the majority of changes happening at guanine and cytosine positions. This confirms previous studies and can be explained by depurination through hydrolytic attacks which more likely deplete guanine while deamination leads to cytosine to thymine variants. Even complete genotype switches from homozygote 0/0 genotypes to the opposite 1/1 genotypes were observed. While positions with such drastic changes might provide suitable candidate markers for estimating short-term time since deposition (TsD), 11 markers were identified which show a slower gradual change of the relative abundance of the artificial variant in both blood and saliva samples, irrespective of storage conditions.
Collapse
Affiliation(s)
| | - Hannah Bauer
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Heidi Pfeiffer
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| | - Marielle Vennemann
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| |
Collapse
|
7
|
Development and validation of a SYBR green-based mitochondrial DNA quantification method by following the MIQE and other guidelines. Leg Med (Tokyo) 2022; 58:102096. [PMID: 35689884 DOI: 10.1016/j.legalmed.2022.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 01/28/2023]
Abstract
In forensic mitochondrial DNA (mtDNA) analysis, quantitative PCR (qPCR) is usually performed to obtain high-quality sequence data for subsequent Sanger or massively parallel sequencing. Unlike methods for nuclear DNA quantification using qPCR, a calibrator is necessary to obtain mtDNA concentrations (i.e., copies/µL). Herein, we developed and validated a mtDNA quantification method based on a SYBR Green assay by following MIQE [Bustin et al., Clin. Chem. 55 (2009) 611-22] and other guidelines. Primers were designed to amplify nucleotide positions 16,190-16,420 in hypervariable region 1 for qPCR using PowerUp SYBR Green and QuantStudio 5. The optimized conditions were 0.3 µM each primer and an annealing temperature of 60 °C under a 2-step cycling protocol. K562 DNA at 100 pg/µL was converted into a mtDNA concentration of 16,400 copies/µL using linearized plasmid DNA. This mtDNA calibrator was obtained by cloning the synthesized DNA fragments of mtDNA (positions 16,140-16,470) containing a 100-bp inversion. The linear dynamic range of the K562 standard curve was 10,000-0.1 pg/µL (r2 ≥ 0.999). The accuracy was examined using NIST SRM 2372a, and its components A, B, and C were quantified with differences of -29.4%, -35.0%, and -22.0%, respectively, against the mtDNA concentrations calculated from published NIST data. We also examined the specificity of the primers, stability of the reaction mix, precision, tolerance against PCR inhibitors, and cross-reactivity against DNA from various animal taxa. Our newly developed mtDNA quantification method is expected to be useful for forensic mtDNA analysis.
Collapse
|
8
|
Wei Y, Wang J, Wang Q, Cong B, Li S. The estimation of bloodstain age utilizing circRNAs and mRNAs biomarkers. Forensic Sci Int 2022; 338:111408. [PMID: 35901585 DOI: 10.1016/j.forsciint.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Determining the time since deposition (TsD) of bloodstains can provide forensic investigators with additional clues, as it can corroborate eyewitness accounts, limit the number of suspects, and help confirm alibis. Bloodstains are the most common bodily fluid stains at crime scenes. In this study, we examined the relative expression levels (REs) of circRNAs and mRNAs data in bloodstains over ten time points by Real-time quantitative polymerase chain reaction (qPCR), to determine the utility of the relative expression levels of RNA markers for TsD estimation. Forensic samples more than just appear in indoor settings, we also evaluated the use of RNA degradation rate to indicate the age of bloodstains in different environments including indoor and outdoor conditions. The expression levels of six blood-specific mRNA markers (GYPA, CD93, ALAS2, SPTB, HBB, HBA), three highly expressed circRNAs in human peripheral blood (hsa_circ_0001445, hsa_circ_0000972, hsa_circ_0000095) and three reference genes (18 S, ACTB and U6) were analyzed across numerous ageing time points. Analysis of the degradation rates of individual RNAs under indoor and outdoor conditions showed that they exhibited a unique degradation profile during the four-month storage interval, with both circRNAs and mRNAs linearly showing continuous degradation, while U6 is more stable than other reference gene markers. In the current study, we firstly used circRNAs as additional novel biomarkers for bloodstain age estimation, and at the same time proved that different environments had a significant impact on the REs of certain blood biomarkers, and sex differences did not affect the age estimation of bloodstains. The REs of the selected RNA molecules in this study showed a non-linear relationship with bloodstain age and the mathematical formula for estimating the bloodstain age based on the relative expression levels of hsa_circ_0001445, ALAS2 and HBB can be used to estimate the TsD of bloodstains from the REs of bloodstains of unknown age, which represent a potentially effective approach to looking for time-dependent changes and TsD estimation.
Collapse
Affiliation(s)
- Yangyan Wei
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Junyan Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Evaluation of Whatman FTA cards for the preservation of yellow fever virus RNA for use in molecular diagnostics. PLoS Negl Trop Dis 2022; 16:e0010487. [PMID: 35704565 PMCID: PMC9200311 DOI: 10.1371/journal.pntd.0010487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 12/31/2022] Open
Abstract
Yellow fever virus (YFV) is a flavivirus that frequently causes outbreaks of hemorrhagic fever in Africa and South America and is considered a reemerging public health threat. Accurate diagnosis of yellow fever (YF) disease is critical as one confirmed case constitutes an outbreak and may trigger a mass vaccination campaign. Highly sensitive and specific molecular diagnostics have been developed; however, these assays require maintenance of cold-chain during transport of specimens to prevent the degradation of viral RNA prior to testing. Such cold-chain requirements are difficult to meet in some regions. In this study, we investigated Whatman FTA cards as an alternative stabilization method of YFV RNA for use in molecular diagnosis. Using contrived specimens, linear regression analysis showed that RNA detection from a single 6mm FTA card punch was significantly less sensitive than traditional RNA extraction; however, pooling RNA extracted from two FTA punches significantly lowered the limit of detection to be equal to that of the traditional RNA extraction gold standard. In experiments addressing the ability of FTA card methodology to stabilize YFV RNA at variable temperature, RNA could be detected for more than two weeks following storage at 25°C. Even more promising, YFV RNA was detectable on cards held at 37°C from two days to over two weeks depending on viral input. FTA cards were also shown to stabilize YFV RNA at high humidity if cards were desiccated prior to inoculation. These results support that FTA cards could be cost effective and easy to use in molecular diagnosis of YF, preserving viral RNA to allow for positive diagnoses in situations where maintaining cold-chain is not feasible.
Collapse
|
10
|
Development and validation of a PCR-free nucleic acid testing method for RNA viruses based on linear molecular beacon probes. J Nanobiotechnology 2022; 20:269. [PMID: 35690818 PMCID: PMC9187886 DOI: 10.1186/s12951-022-01470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background RNA viruses periodically trigger pandemics of severe human diseases, frequently causing enormous economic losses. Here, a nucleic acid extraction-free and amplification-free RNA virus testing probe was proposed for the sensitive and simple detection of classical swine fever virus (CSFV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), based on a double-stranded molecular beacon method. This RNA virus probe contains two base sequences—a recognition strand that binds to the specific domain of CSFV N2 or SARS-CoV-2 N, with a fluorophore (FAM) labeled at the 5′ end, and a complementary strand (CSFV-Probe B or SARS-CoV-2-Probe B), combined with a quencher (BHQ2) labeled at the 3′ end. Results Using linear molecular beacon probe technology, the detection limit of the RNA virus probe corresponding to CSFV and SARS-CoV-2 were as low as 0.28 nM and 0.24 nM, respectively. After CSFV E2 and SARS-CoV-2 N genes were transfected into corresponding host cells, the monitoring of RNA virus probes showed that fluorescence signals were dramatically enhanced in a concentration- and time-dependent manner. These results were supported by those of quantitative (qRT-PCR) and visualization (confocal microscopy) analyses. Furthermore, CSF-positive swine samples and simulated SARS-CoV-2 infected mouse samples were used to demonstrate their applicability for different distributions of viral nucleic acids in series tissues. Conclusions The proposed RNA virus probe could be used as a PCR-free, cost-effective, and rapid point-of-care (POC) diagnostic platform for target RNA virus detection, holding great potential for the convenient monitoring of different RNA viruses for early mass virus screening. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01470-1.
Collapse
|
11
|
Elliott CI, Stotesbury TE, Shafer ABA. Using total RNA quality metrics for time since deposition estimates in degrading bloodstains. J Forensic Sci 2022; 67:1776-1785. [PMID: 35665927 DOI: 10.1111/1556-4029.15072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
The physicochemical changes occurring in biomolecules in degrading bloodstains can be used to approximate the time since deposition (TSD) of bloodstains. This would provide forensic scientists with critical information regarding the timeline of the events involving bloodshed. Our study aims to quantify the timewise degradation trends and temperature dependence found in total RNA from bloodstains without the use of amplification, expanding the scope of the RNA TSD research which has traditionally targeted mRNA and miRNA. Bovine blood with ACD-A anticoagulant was deposited and stored in plastic microcentrifuge tubes at 21 or 4°C and tested over different timepoints spanning 1 week. Total RNA was extracted from each sample and analyzed using automated high sensitivity gel electrophoresis. Nine RNA metrics were visually assessed and quantified using linear and mixed models. The RNA Integrity Number equivalent (RINe) and DV200 were not influenced by the addition of anticoagulant and demonstrated strong negative trends over time. The RINe model fit was high (R2 = 0.60), and while including the biological replicate as a random effect increased the fit for all RNA metrics, no significant differences were found between biological replicates stored at the same temperature for the RINe and DV200. This suggests that these standardized metrics can be directly compared between scenarios and individuals, with DV200 having an inflection point at approximately 28 h. This study provides a novel approach for blood TSD research, revealing metrics that are not affected by inter-individual variation, and improving our understanding of the rapid RNA degradation occurring in bloodstains.
Collapse
Affiliation(s)
- Colin I Elliott
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Theresa E Stotesbury
- Faculty of Science, Forensic Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Aaron B A Shafer
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
12
|
Heo TM, Gwon SY, Yang JH, Hyun SH, Kang HG, Sung HJ. Hemoglobin subunit beta protein as a novel marker for time since deposition of bloodstains at crime scenes. Forensic Sci Int 2022; 336:111348. [DOI: 10.1016/j.forsciint.2022.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
|
13
|
Becskei A, Rahaman S. The life and death of RNA across temperatures. Comput Struct Biotechnol J 2022; 20:4325-4336. [PMID: 36051884 PMCID: PMC9411577 DOI: 10.1016/j.csbj.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature is an environmental condition that has a pervasive effect on cells along with all the molecules and reactions in them. The mechanisms by which prototypical RNA molecules sense and withstand heat have been identified mostly in bacteria and archaea. The relevance of these phenomena is, however, broader, and similar mechanisms have been recently found throughout the tree of life, from sex determination in reptiles to adaptation of viral RNA polymerases, to genetic disorders in humans. We illustrate the temperature dependence of RNA metabolism with examples from the synthesis to the degradation of mRNAs, and review recently emerged questions. Are cells exposed to greater temperature variations and gradients than previously surmised? How do cells reconcile the conflicting thermal stability requirements of primary and tertiary structures of RNAs? To what extent do enzymes contribute to the temperature compensation of the reaction rates in mRNA turnover by lowering the energy barrier of the catalyzed reactions? We conclude with the ecological, forensic applications of the temperature-dependence of RNA degradation and the biotechnological aspects of mRNA vaccine production.
Collapse
|
14
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Li Z, Chen D, Wang Q, Tian H, Tan M, Peng D, Tan Y, Zhu J, Liang W, Zhang L. mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Sci Int Genet 2021; 55:102567. [PMID: 34403952 DOI: 10.1016/j.fsigen.2021.102567] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
RNA molecules, including mRNAs and microRNAs (miRNAs), have been used for forensic body fluid identification. Specific body fluids present unique mRNA expression patterns, while miRNAs identifying body fluids are mainly differentially expressed. miRNAs are thought to be more stable than mRNAs, although this lacks adequate supporting data. In this study, we addressed perceived concerns regarding the stability of miRNAs and mRNAs in blood samples. The samples used in this study involved three groups. First, environmentally-degraded blood stain samples were exposed to a range of environmental conditions over 1-360 days to degrade naturally. Second, simulated-degraded samples were prepared using RNase A or high temperature (80 °C). Furthermore, two authentic casework samples that were proven to be degraded from short tandem repeat (STR) profiles were analyzed. mRNAs and miRNAs present in the same blood samples were simultaneously detected through reverse transcriptase qPCR (RT-qPCR). Furthermore, mRNAs expression was determined by an mRNA multiplex PCR system. Our results showed that both mRNAs and miRNAs were stable in dry environments. The stability of miRNAs was relatively higher than that of mRNAs in humid environments or at high temperature. RNase A had the most serious impact on RNA stability, both mRNA profiles and miRNAs expression patterns were altered. The results of this study provide data and support to demonstrate that miRNAs represent more stable RNA molecules in body fluid identification compared to mRNAs.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan Tian
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Tan
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Zhu
- Department of Criminal Science and Technology, Sichuan Police College, Luzhou, Sichuan 646000, P.R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
16
|
Forensic blood stain aging using reverse transcription real-time PCR. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2021. [DOI: 10.1016/j.fsir.2021.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Weber A, Wójtowicz A, Lednev IK. Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112251. [PMID: 34229147 DOI: 10.1016/j.jphotobiol.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
Blood is one of the most common body fluids discovered at crime scenes involving violent actions. It is one of the most important types of forensic evidence since it allows for the identification of the individual providing that there is a match with a known DNA profile. Determining the time since deposition (TSD) can assist investigators in establishing when the crime occurred or if a bloodstain present is actually related to the investigated event. To develop a forensically sound method for determining the TSD of a bloodstain, it is necessary to understand the underlying biochemical mechanisms occurring during aging. As biochemical processes occurring in blood are necessary for the continued survival of living organisms, they are important subjects of human biology and biomedicine and are well understood. However, the biochemistry of bloodstain aging ex vivo is primarily of interest to forensic scientists and has not yet been thoroughly researched. This preliminary study utilizes steady-state fluorescence spectroscopy to probe the changes in fluorescence properties of peripheral and menstrual blood up to 24-h post deposition. Peripheral and menstrual blood exhibited similar kinetic changes over time, assigned to the presence of the fluorophores: tryptophan, nicotinamide adenine dinucleotide (NADH), and flavins in both biological fluids. The biochemical mechanism of blood aging ex vivo is discussed.
Collapse
Affiliation(s)
- Alexis Weber
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Anna Wójtowicz
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory of Laser Molecular Imaging and Machine Learning (LM&ML), Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russian Federation.
| |
Collapse
|