1
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
2
|
Procopio N, Sguazzi G, Eriksson EV, Ogbanga N, McKell FC, Newton EP, Magni PA, Bonicelli A, Gino S. Transferability of Human and Environmental Microbiome on Clothes as a Tool for Forensic Investigations. Genes (Basel) 2024; 15:375. [PMID: 38540435 PMCID: PMC10970523 DOI: 10.3390/genes15030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Considering the growing importance of microbiome analyses in forensics for identifying individuals, this study explores the transfer of the skin microbiome onto clothing, its persistence on fabrics over time, and its transferability from the environment and between different garments. Furthermore, this project compares three specific QIAGEN microbiome extraction kits to test their extraction efficiency on fabric samples. Additionally, this study aims to check if these extracts contain human DNA, providing a chance to obtain more information from the same evidence for personal identification. The results obtained show: (1) variations in the skin microbiome between the volunteers, potentially due to their different sex; (2) differences in microbial composition between worn and unworn clothing; (3) the influence of the environment on the microbial signature of unworn clothing; (4) the potential use of certain phyla as biomarkers to differentiate between worn and unworn garments, even over extended periods; (5) a tendency towards extraction biases in the QIAampMP® DNA microbiome kit among the three tested ones; and (6) none of the extraction kits allow for the typing of human genetic profiles suitable for comparison. In conclusion, our study offers supplementary insights into the potential utility of time-transferred microbiome analysis on garments for forensic applications.
Collapse
Affiliation(s)
- Noemi Procopio
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Giulia Sguazzi
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino 1, 28100 Novara, Italy;
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emma V. Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 75185 Uppsala, Sweden;
| | - Nengi Ogbanga
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Frazer C. McKell
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Eleanor P. Newton
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Paola A. Magni
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Andrea Bonicelli
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
3
|
Gouello A, Henry L, Chadli D, Salipante F, Gibert J, Boutet-Dubois A, Lavigne JP. Evaluation of the Microbiome Identification of Forensically Relevant Biological Fluids: A Pilot Study. Diagnostics (Basel) 2024; 14:187. [PMID: 38248064 PMCID: PMC10814007 DOI: 10.3390/diagnostics14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
In forensic sciences, body fluids, or biological traces, are a major source of information, and their identification can play a decisive role in criminal investigations. Currently, the nature of biological fluids is assessed using immunological, physico-chemical, mRNA and epigenetic methods, but these have limits in terms of sensitivity and specificity. The emergence of next-generation sequencing technologies offers new opportunities to identify the nature of body fluids by determining bacterial communities. The aim of this pilot study was to assess whether analysis of the bacterial communities in isolated and mixed biological fluids could reflect the situation observed in real forensics labs. Several samples commonly encountered in forensic sciences were tested from healthy volunteers: saliva, vaginal fluid, blood, semen and skin swabs. These samples were analyzed alone or in combination in a ratio of 1:1. Sequencing was performed on the Ion Gene StudioTM S5 automated sequencer. Fluids tested alone revealed a typical bacterial signature with specific bacterial orders, enabling formal identification of the fluid of interest, despite inter-individual variations. However, in biological fluid mixtures, the predominance of some bacterial microbiomes inhibited interpretation. Oral and vaginal microbiomes were clearly preponderant, and the relative abundance of their bacterial communities and/or the presence of common species between samples made it impossible to detect bacterial orders or genera from other fluids, although they were distinguishable from one another. However, using the beta diversity, salivary fluids were identified and could be distinguished from fluids in combination. While this method of fluid identification is promising, further analyses are required to consolidate the protocol and ensure reliability.
Collapse
Affiliation(s)
- Audrey Gouello
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| | - Laura Henry
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- Sciences Sorbonne Universtity, 75005 Paris, France
| | - Djamel Chadli
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- Aix-Marseille University, 13005 Marseille, France
| | - Florian Salipante
- Service de Biostatistiques, Epidémiologie, Santé Publique et Innovation en Méthodologie, Université Montpellier, CHU Nîmes, 30029 Nîmes, France;
| | - Joséphine Gibert
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
| | - Adeline Boutet-Dubois
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| |
Collapse
|
4
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
5
|
Iancu L, Muslim A, Aazmi S, Jitaru V. Postmortem skin microbiome signatures associated with human cadavers within the first 12 h at the morgue. Front Microbiol 2023; 14:1234254. [PMID: 37564294 PMCID: PMC10410280 DOI: 10.3389/fmicb.2023.1234254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Forensic microbiome studies expanded during the last decade, aiming to identify putative bacterial biomarkers to be used for the postmortem interval (PMI) estimation. Bacterial diversity and dynamics during decomposition are influenced by each individual's micro and macroenvironment, ante and postmortem conditions, varying across body sites and time. The skin, the largest organ of the human body, hosts a diverse microbial diversity, representing the first line of defense of a living individual. Targeting the investigation of the postmortem skin microbiome could help understanding the role of microbes during decomposition, and association with the ante and postmortem conditions. Methods The current study aimed to identify the postmortem skin microbiome signatures associated with eight human bodies, received at the Institute of Legal Medicine Iasi, Romania, during April and May 2021. A total of 162 samples (including triplicate) representing face and hands skin microbiome were investigated via Illumina MiSeq, upon arrival at the morgue (T0) and after 12 hours (T1). Results The taxonomic characteristics of the skin microbiota varied across different body sites. However, there were no significant differences in taxonomic profiles between collection time, T0 and T1, except for some dynamic changes in the abundance of dominant bacteria. Moreover, different microbial signatures have been associated with a specific cause of death, such as cardiovascular disease, while an elevated blood alcohol level could be associated with a decrease in bacterial richness and diversity. Discussion The places where the bodies were discovered seemed to play an important role in explaining the bacterial diversity composition. This study shows promising results towards finding common postmortem bacterial signatures associated with human cadavers within the first 12h at the morgue.
Collapse
Affiliation(s)
- Lavinia Iancu
- Department of Criminal Justice, University of North Dakota, Grand Forks, ND, United States
| | - Azdayanti Muslim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
- Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
- Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia
| | - Shafiq Aazmi
- Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia
- School of Biology, Faculty of Applied Science, Universiti Teknologi MARA, Selangor, Malaysia
| | | |
Collapse
|
6
|
Ogbanga N, Nelson A, Ghignone S, Voyron S, Lovisolo F, Sguazzi G, Renò F, Migliario M, Gino S, Procopio N. The Oral Microbiome for Geographic Origin: An Italian Study. Forensic Sci Int Genet 2023; 64:102841. [PMID: 36774834 DOI: 10.1016/j.fsigen.2023.102841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human identification and geographical provenience. Several studies have focused on the use of microbiome for continental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of individuals living in two regions of Italy - Lombardy and Piedmont. Oral samples were obtained by swabbing the donors' oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an understanding of which anatomical region may provide more robust results that can be useful for forensic human identification. Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial families - Corynebacteriaceae and Actinomycetaceae - that showed abundance trends between the two regions. Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) and beta (Pr(>F)= 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identification purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a better discriminant for human identification than the oral one.
Collapse
Affiliation(s)
- Nengi Ogbanga
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy
| | - Samuele Voyron
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy; Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; CRIMEDIM - Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino, 1-28100 Novara, Italy
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Noemi Procopio
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; School of Natural Sciences, University of Central Lancashire, PR1 2HE Preston, UK.
| |
Collapse
|