1
|
Ribeiro GO, Rodrigues LDAP, dos Santos TBS, Alves JPS, Oliveira RS, Nery TBR, Barbosa JDV, Soares MBP. Innovations and developments in single cell protein: Bibliometric review and patents analysis. Front Microbiol 2023; 13:1093464. [PMID: 36741879 PMCID: PMC9897208 DOI: 10.3389/fmicb.2022.1093464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Background Global demand for food products derived from alternative proteins and produced through sustainable technological routes is increasing. Evaluation of research progress, main trends and developments in the field are valuable to identify evolutionary nuances. Methods In this study, a bibliometric analysis and search of patents on alternative proteins from fermentation processes was carried out using the Web of Science and Derwent World Patents Index™ databases, using the keywords and Boolean operators "fermentation" AND "single cell protein" OR "single-cell protein." The dataset was processed and graphics generated using the bibliometric software VOSviewer and OriginPro 8.1. Results The analysis performed recovered a total of 360 articles, of which 271 were research articles, 49 literature review articles and 40 publications distributed in different categories, such as reprint, proceedings paper, meeting abstract among others. In addition, 397 patents related to the field were identified, with China being the country with the largest number of publications and patents deposits. While this topic is largely interdisciplinary, the majority of work is in the area of Biotechnology Applied Microbiology, which boasts the largest number of publications. The area with the most patent filings is the food sector, with particular emphasis on the fields of biochemistry, beverages, microbiology, enzymology and genetic engineering. Among these patents, 110 are active, with industries or companies being the largest depositors. Keyword analysis revealed that the area of study involving single cell protein has included investigation into types of microorganisms, fermentation, and substrates (showing a strong trend in the use of agro-industrial by-products) as well as optimization of production processes. Conclusion This bibliometric analysis provided important information, challenges, and trends on this relevant subject.
Collapse
Affiliation(s)
- Gislane Oliveira Ribeiro
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Leticia de Alencar Pereira Rodrigues
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,*Correspondence: Leticia de Alencar Pereira Rodrigues, ✉
| | | | - João Pedro Santos Alves
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Roseane Santos Oliveira
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Tatiana Barreto Rocha Nery
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil
| | - Josiane Dantas Viana Barbosa
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Biotechnology Laboratory, Alternative Protein Competence Center, University Center SENAI CIMATEC, Salvador, Brazil,SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil,Milena Botelho Pereira Soares,
| |
Collapse
|
2
|
Hawaz E, Tafesse M, Tesfaye A, Kiros S, Beyene D, Kebede G, Boekhout T, Groenwald M, Theelen B, Degefe A, Degu S, Admasu A, Hunde B, Muleta D. Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-022-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Purpose
Yeast strains tolerant to a wide range of stress conditions are needed for the production of bioethanol from substrates rich in sugar. In our earlier research findings, Meyerozyma caribbica isolate MJTm3 (OM329077) demonstrated remarkable stress tolerance and fermentative activity. The present study aimed to optimize six fermentation parameters to generate conducive fermentation conditions for ethanol production by M. caribbica isolate MJTm3.
Method
The response surface method (RSM) based on central composite design (CCD) was employed to optimize process conditions for higher bioethanol yield. The optimization process was carried out based on six independent parameters, namely temperature (25–35 °C), pH (5.5–6.5), inoculum size (10–20% (v/v)), molasses concentration (25–35 (w/v)), mixing rate (110–150 rpm), and incubation period (48–72-h). Analysis of ethanol concentration was done by HPLC equipped with a UV detector.
Result
The optimal conditions of the parameters resulting in a maximum predicted ethanol yield were as follows: pH 5.5, an inoculum size of 20%, a molasses concentration of 25 °Bx, a temperature of 30 °C, an incubation period of 72-h, and a mixing rate of 160 revolutions per minute (rpm). Using the above optimum conditions, the model predicted a bioethanol yield of 79%, 92% of the theoretical yield, a bioethanol concentration of 49 g L−1, and a productivity of 0.68 g L−1 h−1. A batch fermentation experiment was carried out to validate the predicted values and resulted in a bioethanol yield of 86%, 95% of theoretical yield, a bioethanol concentration of 56 g L−1, and productivity of 0.78 g L−1 h−1. On the other hand, the surface plot analysis revealed that the synergistic effect of the molasses concentration and the mixing rate were vital to achieving the highest bioethanol yield. These values suggested that the RSM with CCD was an effective method in producing the highest possible output of bioethanol from molasses in actual operation.
Conclusion
The study confirmed the potential of using M. caribbica isolate MJTm3 for bioethanol production from sugarcane molasses under the abovementioned optimal fermentation conditions.
Collapse
|
3
|
Atilio NC, Fertonani FL, de Oliveira EC. Modified and Optimized Glass Electrode for pH Measurements in Hydrated Ethanol Fuel. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228048. [PMID: 36432149 PMCID: PMC9694676 DOI: 10.3390/molecules27228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
One of the quality control parameters of ethanol fuel is pH, established by the Brazilian standard ABNT NBR 10891, whose scope is specific for hydrated ethanol fuel, and by the American standard ASTM D 6423, which focuses on anhydrous ethanol fuel. This study presented a modified and optimized structure using a single solvent, both for the glass electrode and the external reference electrode, to minimize the presence of the liquid junction potential for measuring the pH of hydrated ethanol fuel. The Box-Behnken design enabled us to determine the optimal condition expected for the new measurement system, which was compared with the systems proposed by the standard references and the turning range of acid-base indicators using parametric and nonparametric tests. The results revealed that the pH values obtained by the different systems are statistically different, and that only the values obtained by this proposal are suitable for the pH range found by the indicators. The optimized electrode presented an adequate response sensitivity to the Nernst equation, having an operational behavior adequate for the modified and optimized glass electrode for pH measurements in hydrated ethanol fuel.
Collapse
Affiliation(s)
- Natalia Cambiaghi Atilio
- Postgraduate Programme in Metrology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Fernando Luis Fertonani
- Biosciences, Languages and Exact Sciences Institute (Ibilce), São Paulo State University (Unesp), Rua Cristovão Colombo, 2265, Jardim Nazareth, São José do Rio Preto 15054-000, Brazil
| | - Elcio Cruz de Oliveira
- Postgraduate Programme in Metrology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
- Logistics, Operational Planning and Control, Measurement and Product Inventory Management, PETROBRAS S.A., Rio de Janeiro 20231-030, Brazil
- Correspondence:
| |
Collapse
|
4
|
Shahbaz A, Hussain N, Saleem MZ, Saeed MU, Bilal M, Iqbal HM. Nanoparticles as stimulants for efficient generation of biofuels and renewables. FUEL 2022. [DOI: 10.1016/j.fuel.2022.123724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|