1
|
Sulaiman NS, Mohd Zaini H, Wan Ishak WR, Matanjun P, George R, Mantihal S, Ching FF, Pindi W. Duckweed protein: Extraction, modification, and potential application. Food Chem 2025; 463:141544. [PMID: 39388881 DOI: 10.1016/j.foodchem.2024.141544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Discovering alternative protein sources that are both nutritious and environmentally friendly is essential to meet the growing global population's needs. Duckweed offers promise due to its cosmopolitan distribution, rapid growth, high protein content, and scalability from household tanks to large lagoons without requiring arable land that competes for the major crops. Rich in essential amino acids, particularly branched-chain amino acids, duckweed supports human health. Extraction methods, such as ultrasound and enzymatic techniques, enhance protein yield compared to traditional methods. However, low protein solubility remains a challenge, addressed by protein modification techniques (physical, chemical, and biological) to broaden its applications. Duckweed proteins hold potential as functional food ingredients due to their unique physicochemical properties. This review also includes patents and regulations related to duckweed protein, filling a gap in current literature. Overall, duckweed presents a sustainable protein source with a lower environmental impact compared to conventional crops.
Collapse
Affiliation(s)
- Nurul Shaeera Sulaiman
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Hana Mohd Zaini
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wan Rosli Wan Ishak
- School of Health Sciences, University Science Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Patricia Matanjun
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Ramlah George
- Nutritional Biochemistry Research Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Fui Fui Ching
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Fan S, Yin Y, Liu Q, Yang X, Pan D, Wu Z, Du M, Tu M. Blue food proteins: Novel extraction technologies, properties, bioactivities and applications in foods. Curr Res Food Sci 2024; 9:100878. [PMID: 39498458 PMCID: PMC11533013 DOI: 10.1016/j.crfs.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
With the growing demand for healthy and sustainable food, blue food proteins have emerged as an important way to address resource-intensive production and environmental concerns. This paper systematically reviewed the extraction technologies, properties and bioactivities of blue food proteins and explored their wide range of applications. The novel extraction technologies not only improve the extraction efficiency of the proteins, shorten the production time and have environmental advantages, but also enhance the protein properties and facilitate subsequent applications. The amino acid composition of the blue food proteins is close to the FAO recommended standard and better than most of the livestock proteins, with excellent solubility and water holding capacity. Some of the proteins also have significant bioactivity and show great potential for improving health. Applications include emulsions, protein films, microcapsules, food colorants, dietary supplements, 3D printing materials, and cultured meat. This paper provides theoretical support for further research and application of blue food proteins and promotes their wider application in future food products.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Yaxin Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Xinru Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
3
|
Xie Y, Li H, Deng Z, Peng H, Yu Y, Zhang B. Preparation and characterization of a new food-grade Pickering emulsion stabilized by mulberry-leaf protein nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39271605 DOI: 10.1002/jsfa.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Food-grade Pickering particles, particularly plant proteins, have attracted significant interest due to their bio-based nature, environmental friendliness, and edibility. Mulberry-leaf protein (MLP) is a high-quality protein with rich nutritional value and important functional properties. It has special amphoteric and emulsifying characteristics, making it valuable for use in Pickering emulsions. This study aimed to investigate the feasibility of using MLP nanoparticles as solid particles to stabilize Pickering emulsions. RESULTS The particle size of MLP nanoparticles was less than 300 nm under neutral and alkaline conditions. At pH 9, the zeta potential value reached -34.3 mV, indicating the electrostatic stability of the particles. As ion concentration increased, the particle size of MLP nanoparticles increased, and the zeta potential decreased. Throughout the storage process, no obvious aggregation or precipitation was observed in the dispersion of MLP nanoparticles, indicating strong stability. The particle size of the Pickering emulsion decreased with the increase in protein concentration. When the protein concentration was low, the particles on the oil-water interface became sparse, resulting in poor stability of the prepared emulsion and making it susceptible to aggregation and thus larger particle sizes. Increasing the oil-phase ratio to 70% (v/v) promotes the formation of Pickering emulsions, which exhibit exceptional stability when MLP nanoparticles are fixed at a concentration of 20 mg mL-1. CONCLUSION The overall findings indicated that MLP nanoparticles have potential as food-grade materials for Pickering emulsions, marking a novel application of these nanoparticles in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Raja K, Suresh K, Anbalagan S, Ragini YP, Kadirvel V. Investigating the nutritional viability of marine-derived protein for sustainable future development. Food Chem 2024; 448:139087. [PMID: 38531302 DOI: 10.1016/j.foodchem.2024.139087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Marine-derived proteins are emerging as a pivotal resource with diverse applications in food, pharmaceuticals, and biotechnological industries. The marine environment offers many protein sources, including fish, shellfish, algae, and microbes, which garnered attention due to their nutritional composition. Evaluating their protein and amino acid profiles is essential in assessing their viability as substitutes for conventional protein sources. Continuously exploiting marine ecosystems for protein extraction has led to significant environmental impacts. The optimization of aquacultural practices and implementation of innovative practices are imperative for the sustainable production of marine-based protein. This review will discuss the different sources of marine proteins, their nutritional profile, and their associated environmental impact. It also reviews the relationship between aquaculture advancements and regulatory frameworks toward attaining sustainable practices, alongside exploring the challenges and potentials in utilizing marine sources for protein production.
Collapse
Affiliation(s)
- Kamalesh Raja
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Karishma Suresh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India
| | - Saravanan Anbalagan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, India.
| | | | - Vijayasri Kadirvel
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| |
Collapse
|
6
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
7
|
Bouzenad N, Ammouchi N, Chaib N, Messaoudi M, Bousabaa W, Bensouici C, Sawicka B, Atanassova M, Ahmad SF, Zahnit W. Exploring Bioactive Components and Assessing Antioxidant and Antibacterial Activities in Five Seaweed Extracts from the Northeastern Coast of Algeria. Mar Drugs 2024; 22:273. [PMID: 38921584 PMCID: PMC11205126 DOI: 10.3390/md22060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.
Collapse
Affiliation(s)
- Nawal Bouzenad
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), University 20 August 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- Department of Sciences and Technology, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria;
- Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), University 20 August 1955, Skikda 21000, Algeria
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment (LCBE), University 20 August 1955, Skikda 21000, Algeria
| | | | - Walid Bousabaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail 42004, Algeria;
| | - Chawki Bensouici
- Laboratory of Biochemistry, Biotechnology and Health Division, Center for Research in Biotechnology, Constantine 25000, Algeria;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commoditties Science, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, Ouargla 30000, Algeria
| |
Collapse
|
8
|
Laureati M, De Boni A, Saba A, Lamy E, Minervini F, Delgado AM, Sinesio F. Determinants of Consumers' Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024; 13:1534. [PMID: 38790835 PMCID: PMC11120339 DOI: 10.3390/foods13101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review article aims to provide an up-to-date overview of the main determinants of consumers' acceptance of novel foods (new foods and ingredients) in the EU with emphasis on product's intrinsic properties (sensory characteristics) and individual factors (socio-demographics, perceptive, psychological) by adopting a systematic approach following the PRISMA methodology. Case studies on terrestrial (i.e., insects, cultured meat and other animal origin products, plant-based food including mushrooms, plant-based analogues, pulses, and cereals) and aquatic systems (i.e., algae and jellyfish) are included focusing on age-related and cross-national differences in consumer acceptance of novel foods and ingredients. General trends have emerged that are common to all the novel foods analysed, regardless of their aquatic or terrestrial origin. Aspects such as food neophobia, unfamiliarity, and poor knowledge of the product are important barriers to the consumption of novel foods, while healthiness and environmental sustainability perception are drivers of acceptance. Sensory properties are challenging for more familiar ingredients such as plant-based food (e.g., novel food made by pulses, mushrooms, cereals and pseudocereals). Results are discussed in terms of feasibility of introducing these products in the EU food systems highlighting strategies that can encourage the use of new ingredients or novel foods.
Collapse
Affiliation(s)
- Monica Laureati
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Annalisa De Boni
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.B.); (F.M.)
| | - Anna Saba
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition (CREA-AN), Via Ardeatina, 546, 00178 Rome, Italy; (A.S.); (F.S.)
| | - Elsa Lamy
- Mediterranean Institute for Agriculture Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Evora, 7006-554 Évora, Portugal; (E.L.); (A.M.D.)
| | - Fabio Minervini
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.B.); (F.M.)
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture Environment and Development & CHANGE—Global Change and Sustainability Institute, University of Evora, 7006-554 Évora, Portugal; (E.L.); (A.M.D.)
| | - Fiorella Sinesio
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition (CREA-AN), Via Ardeatina, 546, 00178 Rome, Italy; (A.S.); (F.S.)
| |
Collapse
|
9
|
Tian Y, Sun F, Wang Z, Yuan C, Wang Z, Guo Z, Zhou L. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chem X 2024; 21:101066. [PMID: 38268843 PMCID: PMC10806259 DOI: 10.1016/j.fochx.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Hwang SH, Lee J, Park KJ. Profile change of the volatile and non-volatile compounds in dried or baked laver by photooxidation. J Food Sci 2024; 89:998-1011. [PMID: 38161275 DOI: 10.1111/1750-3841.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Effects of light or dark storage condition on the profile changes of volatile and non-volatile compounds were evaluated in dried and baked laver for 60 days. Volatile and non-volatile compounds were analyzed using gas chromatography-mass selective detection and high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry, respectively. Baked laver stored in light conditions for 60 days produced the most volatile compounds, whereas dried laver stored in the dark produced the least volatile compounds. Total 11 classes of volatile compounds were detected, including alkanes, alkenes, and ketones, with aldehydes being most abundant in dried laver stored under light. Metabolite analysis of non-volatile compounds led to the selection of 12 compounds with a higher variable importance projection (VIP) value of >1.0: 6 fatty acids (VIP 1.2-2.0), 2 flavanols (VIP 1.3-1.8), hydroxybenzoic acid (VIP 1.5), hydroxycinnamic acid (VIP 2.3), a phenolic acid ester (VIP 1.9), and phloroglucinol (VIP 1.2). Generally, levels of these compounds decreased more following storage in the light than under dark, irrespective of laver preparation. The content of linolenic acid was particularly affected by storage conditions, with light conditions causing a fourfold reduction in linolenic acid level compared with dark conditions, which could result in an increased formation of aldehydes. Gallic acid and sinapinic acid were detected in dried but not baked laver, as they are destroyed by heat treatment. Therefore, laver should be baked and stored in dark conditions to prevent the development of rancidity. PRACTICAL APPLICATION: Laver is one of the representative seaweeds, and the popularity among consumers increases. Although commercially available laver is prepared in dried or baked condition, scientific studies on the changes of metabolites, including volatile and non-volatile compounds during storage, are scarce. The results of this study can be applied to improve proper storage methods to maintain the quality of laver, which can be beneficial for consumers and food industry.
Collapse
Affiliation(s)
- Sun Hye Hwang
- Food Analysis Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kee-Jai Park
- Food Analysis Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
11
|
Şensu E, Ayar EN, Okudan EŞ, Özçelik B, Yücetepe A. Characterization of Proteins Extracted from Ulva sp., Padina sp., and Laurencia sp. Macroalgae Using Green Technology: Effect of In Vitro Digestion on Antioxidant and ACE-I Inhibitory Activity. ACS OMEGA 2023; 8:48689-48703. [PMID: 38162757 PMCID: PMC10753567 DOI: 10.1021/acsomega.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2024]
Abstract
Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.
Collapse
Affiliation(s)
- Eda Şensu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- Department
of Food Technology, Istanbul Gelisim Higher Vocational School, Istanbul Gelisim
University, Avcılar, Istanbul 34310, Turkey
| | - Eda Nur Ayar
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
| | | | - Beraat Özçelik
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- BIOACTIVE
Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey
| | - Aysun Yücetepe
- Department
of Food Engineering, Faculty of Engineering, Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
12
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
13
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
14
|
Rogel-Castillo C, Latorre-Castañeda M, Muñoz-Muñoz C, Agurto-Muñoz C. Seaweeds in Food: Current Trends. PLANTS (BASEL, SWITZERLAND) 2023; 12:2287. [PMID: 37375912 DOI: 10.3390/plants12122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Edible seaweeds are an excellent source of macronutrients, micronutrients, and bioactive compounds, and they can be consumed raw or used as ingredients in food products. However, seaweeds may also bioaccumulate potentially hazardous compounds for human health and animals, namely, heavy metals. Hence, the purpose of this review is to analyze the recent trends of edible seaweeds research: (i) nutritional composition and bioactive compounds, (ii) the use and acceptability of seaweeds in foodstuffs, (iii) the bioaccumulation of heavy metals and microbial pathogens, and (iv) current trends in Chile for using seaweeds in food. In summary, while it is evident that seaweeds are consumed widely worldwide, more research is needed to characterize new types of edible seaweeds as well as their use as ingredients in the development of new food products. Additionally, more research is needed to maintain control of the presence of heavy metals to assure a safe product for consumers. Finally, the need to keep promoting the benefits of seaweed consumption is emphasized, adding value in the algae-based production chain, and promoting a social algal culture.
Collapse
Affiliation(s)
- Cristian Rogel-Castillo
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Monica Latorre-Castañeda
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Camila Muñoz-Muñoz
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| | - Cristian Agurto-Muñoz
- Department of Food Science and Technology, School of Pharmacy, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
- Interdisciplinary Marine Biotechnology Group (GIBMAR), Biotechnology Center, University of Concepcion, Barrio Universitario S/N, Concepción 4070386, Chile
| |
Collapse
|
15
|
Nowacka M, Trusinska M, Chraniuk P, Drudi F, Lukasiewicz J, Nguyen NP, Przybyszewska A, Pobiega K, Tappi S, Tylewicz U, Rybak K, Wiktor A. Developments in Plant Proteins Production for Meat and Fish Analogues. Molecules 2023; 28:molecules28072966. [PMID: 37049729 PMCID: PMC10095742 DOI: 10.3390/molecules28072966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
In recent years, there have been significant developments in plant proteins production for meat and fish analogues. Some of the key developments include the use of new plant protein sources such as soy, legumes, grains, potatoes, and seaweed, as well as insect proteins, leaf proteins, mushrooms, and microbial proteins. Furthermore, to improve the technological and functional properties of plant proteins, they can be subjected to traditional and unconventional treatments such as chemical (glycosylation, deamidation, phosphorylation, and acylation), physical (pulsed electric fields, ultrasound, high hydrostatic pressure, dynamic high-pressure treatment, and cold plasma), and biological (fermentation and enzymatic modification). To obtain the high quality and the desired texture of the food product, other ingredients besides proteins, such as water, fat, flavors, binders, dyes, vitamins, minerals, and antioxidants, also have to be used. The final product can be significantly influenced by the matrix composition, variety of ingredients, and water content, with the type of ingredients playing a role in either enhancing or constraining the desired texture of the food. There are several types of technologies used for meat and fish analogues production, including extrusion, shear cell technology, spinning, 3D printing, and others. Overall, the technologies used for meat and fish analogues production are constantly evolving as new innovations are developed and existing methods are improved. These developments have led to the creation of plant-based products that have a similar texture, taste, and nutritional profile to meat and fish, making them more appealing to consumers seeking alternatives to animal-based products.
Collapse
|
16
|
Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023; 12:antiox12030612. [PMID: 36978860 PMCID: PMC10045370 DOI: 10.3390/antiox12030612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Seaweeds are an underutilized food in the Western world, but they are widely consumed in Asia, with China being the world’s larger producer. Seaweeds have gained attention in the food industry in recent years because of their composition, which includes polysaccharides, lipids, proteins, dietary fiber, and various bioactive compounds such as vitamins, essential minerals, phenolic compounds, and pigments. Extraction techniques, ranging from more traditional techniques such as maceration to novel technologies, are required to obtain these components. Pressurized liquid extraction (PLE) is a green technique that uses high temperatures and pressure applied in conjunction with a solvent to extract components from a solid matrix. To improve the efficiency of this technique, different parameters such as the solvent, temperature, pressure, extraction time and number of cycles should be carefully optimized. It is important to note that PLE conditions allow for the extraction of target analytes in a short-time period while using less solvent and maintaining a high yield. Moreover, the combination of PLE with other techniques has been already applied to extract compounds from different matrices, including seaweeds. In this way, the combination of PLE-SFE-CO2 seems to be the best option considering both the higher yields obtained and the economic feasibility of a scaling-up approximation. In addition, the food industry is interested in incorporating the compounds extracted from edible seaweeds into food packaging (including edible coating, bioplastics and bio-nanocomposites incorporated into bioplastics), food products and animal feed to improve their nutritional profile and technological properties. This review attempts to compile and analyze the current data available regarding the application of PLE in seaweeds to determine the use of this extraction technique as a method to obtain active compounds of interest for food industry application.
Collapse
Affiliation(s)
- Ana Perez-Vazquez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
17
|
Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW. Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Res Int 2023; 165:112480. [PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
Collapse
Affiliation(s)
- Yi Ting Neo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62, Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
18
|
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae-Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023; 13:386. [PMID: 36830755 PMCID: PMC9953460 DOI: 10.3390/biom13020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Seaweed is in the spotlight as a promising source of nutrition for humans as the search for sustainable food production systems continues. Seaweed has a well-documented rich nutritional profile containing compounds such as polyphenols, carotenoids and polysaccharides as well as proteins, fatty acids and minerals. Seaweed processing for the extraction of functional ingredients such as alginate, agar, and carrageenan is well-established. Novel pretreatments such as ultrasound assisted extraction or high-pressure processing can be incorporated to more efficiently extract these targeted ingredients. The scope of products that can be created using seaweed are wide ranging: from bread and noodles to yoghurt and milk and even as an ingredient to enhance the nutritional profile and stability of meat products. There are opportunities for food producers in this area to develop novel food products using seaweed. This review paper discusses the unique properties of seaweed as a food, the processes involved in seaweed aquaculture, and the products that can be developed from this marine biomass. Challenges facing the industry such as consumer hesitation around seaweed products, the safety of seaweed, and processing hurdles will also be discussed.
Collapse
Affiliation(s)
- Laura E. Healy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, D02 V583 Dublin, Ireland
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - James Curtin
- Faculty of Engineering & Built Environment, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | | |
Collapse
|
19
|
Panchal SK, Ghattamaneni NKR, Magnusson M, Cole A, Roberts D, Neveux N, Brown L, Paul NA. Freshwater Macroalgae, Oedogonium, Grown in Wastewater Reduce Diet-Induced Metabolic Syndrome in Rats. Int J Mol Sci 2022; 23:ijms232213811. [PMID: 36430290 PMCID: PMC9695597 DOI: 10.3390/ijms232213811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Macroalgae produce compounds with industrial, pharmaceutical and nutritional applications. In this study, biomass from the freshwater macroalgal genus Oedogonium was grown in either treated municipal wastewater (M) or ash dam water from a coal-fired power station (D). The biomass was investigated for its metabolic responses in high-carbohydrate, high-fat diet-fed rats, a model of human metabolic syndrome. The Oedogonium biomass cultured in M contained higher amounts of K, Mg, omega-3 polyunsaturated fatty acids (PUFA), insoluble fibre and β-carotene, while biomass grown in D contained higher amounts of Al, Fe, V, Zn, Mn and As. Biomass from M further increased body weight and inflammation in the heart and colon in high-carbohydrate, high-fat diet-fed rats. In contrast, biomass from D prevented changes in metabolic, cardiovascular and liver parameters without changing tissue histology. We suggest that increased intake of metals and metalloids through macroalgal biomass from D may decrease abdominal fat deposition while polysaccharides, PUFA and carotenoids from M may improve blood glucose responses in an obesogenic diet. Thus, macroalgal biomass grown in different wastewater sources could be acceptable for feed or food applications. This biomass could even provide potential health benefits in diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
- Correspondence: ; Tel.: +61-2-4570-1932
| | - Naga K. R. Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Marie Magnusson
- Te Aka Mātuatua—School of Science, University of Waikato, Tauranga 3112, New Zealand
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew Cole
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - David Roberts
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Nicolas Neveux
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
- Pacific Biotechnologies Australia Pty Ltd., James Cook University, Townsville, QLD 4811, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas A. Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
20
|
Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Application of seaweed dietary fiber as a potential alternative to phosphates in frankfurters with healthier profiles. Meat Sci 2022; 196:109044. [DOI: 10.1016/j.meatsci.2022.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
22
|
A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy. SUSTAINABILITY 2022. [DOI: 10.3390/su14127104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Kingdom of Plantae is considered the main source of human food, and includes several edible and medicinal plants, whereas mushrooms belong to the Kingdom of fungi. There are a lot of similar characteristics between mushrooms and higher plants, but there are also many differences among them, especially from the human health point of view. The absences of both chlorophyll content and the ability to form their own food are the main differences between mushrooms and higher plants. The main similar attributes found in both mushrooms and higher plants are represented in their nutritional and medicinal activities. The findings of this review have a number of practical implications. A lot of applications in different fields could be found also for both mushrooms and higher plants, especially in the bioenergy, biorefinery, soil restoration, and pharmaceutical fields, but this study is the first report on a comparative photographic review between them. An implication of the most important findings in this review is that both mushrooms and plants should be taken into account when integrated food and energy are needed. These findings will be of broad use to the scientific and biomedical communities. Further investigation and experimentation into the integration and production of food crops and mushrooms are strongly recommended under different environmental conditions, particularly climate change.
Collapse
|