1
|
Sato Y, Shahi S, Telengech P, Hisano S, Cornejo C, Rigling D, Kondo H, Suzuki N. A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe. Virus Res 2022; 307:198606. [PMID: 34688782 DOI: 10.1016/j.virusres.2021.198606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sakae Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Carolina Cornejo
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
2
|
A New Double-Stranded RNA Mycovirus in Cryphonectria naterciae Is Able to Cross the Species Barrier and Is Deleterious to a New Host. J Fungi (Basel) 2021; 7:jof7100861. [PMID: 34682282 PMCID: PMC8538617 DOI: 10.3390/jof7100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cryphonectria is a fungal genus associated with economically significant disease of trees. Herein we characterized a novel double-stranded RNA virus from the fungal species Cryphonectria naterciae, a species unexplored as a virus host. De novo assembly of RNA-seq data and Sanger sequencing of RACE (rapid amplification of cDNA ends) clones gave the complete, non-segmented genome (10,164 bp) of the virus termed Cryphonectria naterciae fusagravirus (CnFGV1) that was phylogenetically placed within the previously proposed viral family Fusagraviridae. Of 31 field-collected strains of C. naterciae, 40% tested CnFGV1-positive. Cocultivation resulted in within-species transmission of CnFGV1 to virus-free strains of C. naterciae. Comparison of the mycelium phenotype and the growth rate of CnFGV1-infected and virus-free isogenic strains revealed frequent sectoring and growth reduction in C. naterciae upon virus infection. Co-culturing also led to cross-species transmission of CnFGV1 to Cryphonectria carpinicola and Cryphonectria radicalis, but not to Cryphonectria parasitica. The virus-infected C. naterciae and the experimentally infected Cryphonectria spp. readily transmitted CnFGV1 through asexual spores to the next generation. CnFGV1 strongly reduced conidiation and in some cases vegetative growth of C. carpinicola, which is involved in the European hornbeam disease. This study is the first report of a fusagravirus in the family Cryphonectriaceae and lays the groundwork for assessing a hypovirulence effect of CnFGV1 against the hornbeam decline in Europe.
Collapse
|
3
|
Cornejo C, Hauser A, Beenken L, Cech T, Rigling D. Cryphonectria carpinicola sp. nov. Associated with hornbeam decline in Europe. Fungal Biol 2020; 125:347-356. [PMID: 33910676 DOI: 10.1016/j.funbio.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Since the early 2000s, reports on declining hornbeam trees (Carpinus betulus) are spreading in Europe. Two fungi are involved in the decline phenomenon: One is Anthostoma decipiens, but the other etiological agent has not been identified yet. We examined the morphology, phylogenetic position, and pathogenicity of yellow fungal isolates obtained from hornbeam trees from Austria, Georgia and Switzerland, and compared data with disease reports from northern Italy documented since the early 2000s. Results demonstrate distinctive morphology and monophyletic status of Cryphonectria carpinicola sp. nov. as etiological agent of the European hornbeam decline. Interestingly, the genus Cryphonectria splits into two major clades. One includes Cry. carpinicola together with Cry. radicalis, Cry. decipiens and Cry. naterciae from Europe, while the other comprises species known from Asia-suggesting that the genus Cryphonectria has developed at two evolutionary centres, one in Europe and Asia Minor, the other in East Asia. Pathogenicity studies confirm that Car. betulus is a major host species of Cry. carpinicola. This clearly distinguished Cry. carpinicola from other Cryphonectria species, which mainly occur on Castanea and Quercus.
Collapse
Affiliation(s)
- Carolina Cornejo
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
| | - Andrea Hauser
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Ludwig Beenken
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Thomas Cech
- Bundesforschungszentrum für Wald, Institut für Waldschutz, Seckendorff-Gudent-Weg 8, 1131, Wien, Austria
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Shahi S, Chiba S, Kondo H, Suzuki N. Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range. Virology 2020; 554:55-65. [PMID: 33383414 DOI: 10.1016/j.virol.2020.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5'-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts.
Collapse
Affiliation(s)
- Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
5
|
Comparative Genomics Analyses of Lifestyle Transitions at the Origin of an Invasive Fungal Pathogen in the Genus Cryphonectria. mSphere 2020; 5:5/5/e00737-20. [PMID: 33055257 PMCID: PMC7565894 DOI: 10.1128/msphere.00737-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. Emerging fungal pathogens are a threat to forest and agroecosystems, as well as animal and human health. How pathogens evolve from nonpathogenic ancestors is still poorly understood, making the prediction of future outbreaks challenging. Most pathogens have evolved lifestyle adaptations, which were enabled by specific changes in the gene content of the species. Hence, understanding transitions in the functions encoded by genomes gives valuable insight into the evolution of pathogenicity. Here, we studied lifestyle evolution in the genus Cryphonectria, including the prominent invasive pathogen Cryphonectria parasitica, the causal agent of chestnut blight on Castanea species. We assembled and compared the genomes of pathogenic and putatively nonpathogenic Cryphonectria species, as well as sister group pathogens in the family Cryphonectriaceae (Diaporthales, Ascomycetes), to investigate the evolution of genome size and gene content. We found a striking loss of genes associated with carbohydrate metabolism (CAZymes) in C. parasitica compared to other Cryphonectriaceae. Despite substantial CAZyme gene loss, experimental data suggest that C. parasitica has retained wood colonization abilities shared with other Cryphonectria species. Putative effectors substantially varied in number, cysteine content, and protein length among species. In contrast, secondary metabolite gene clusters show a high degree of conservation within the genus. Overall, our results underpin the recent lifestyle transition of C. parasitica toward a more pathogenic lifestyle. Our findings suggest that a CAZyme loss may have promoted pathogenicity of C. parasitica on Castanea species. Analyzing gene complements underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens. IMPORTANCE Forest and agroecosystems, as well as animal and human health, are threatened by emerging pathogens. Following decimation of chestnuts in the United States, the fungal pathogen Cryphonectria parasitica colonized Europe. After establishment, the pathogen population gave rise to a highly successful lineage that spread rapidly across the continent. Core to our understanding of what makes a successful pathogen is the genetic repertoire enabling the colonization and exploitation of host species. Here, we have assembled >100 genomes across two related genera to identify key genomic determinants leading to the emergence of chestnut blight. We found subtle yet highly specific changes in the transition from saprotrophy to latent pathogenicity mostly determined by enzymes involved in carbohydrate metabolism. Large-scale genomic analyses of genes underlying key nutrition modes can facilitate the detection of species with the potential to emerge as pathogens.
Collapse
|
6
|
Plant Pathogenic Fungi Associated with Coraebus florentinus (Coleoptera: Buprestidae) Attacks in Declining Oak Forests. FORESTS 2019. [DOI: 10.3390/f10060488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The black-banded oak borer, Coraebus florentinus, is an emerging pest of oak trees in the western Mediterranean region. Larvae of the insect are xylophagous and progressively excavate an annular gallery that interrupts sap flow, resulting in the death of the attacked branches. Until now, limited information has been available regarding the ecological interactions between C. florentinus and the main plant pathogenic fungi involved in the etiology of oak decline. Knowledge of these interactions is important in understanding their impact in natural ecosystems and developing appropriate management strategies. Therefore, in this study, we characterized the fungal communities occurring in the exoskeleton of adults and larvae of C. florentinus and associated with the necrotic wood tissues surrounding the branch galleries of declining oak trees. A total of 29 fungal species were identified based on DNA sequence data and morphological features, of which 14 were from symptomatic woody tissues, six from insect exoskeleton, and nine from both insects and symptomatic wood tissues. The most frequent fungal species, Cryphonectria naterciae (15.9% of isolates), Dothiorella iberica (11.3%), and Diplodia corticola (9.9%), were isolated from both insect and gallery systems. All three species are well-known oak pathogens and are reported here, for the first time, to be associated with C. florentinus. At the same time, 89.6% of the fungal taxa were isolated from one or two sites, highlighting the site-dependence of fungal community assemblages.
Collapse
|
7
|
Rigling D, Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. MOLECULAR PLANT PATHOLOGY 2018; 19:7-20. [PMID: 28142223 PMCID: PMC6638123 DOI: 10.1111/mpp.12542] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/25/2023]
Abstract
Chestnut blight, caused by Cryphonectria parasitica, is a devastating disease infecting American and European chestnut trees. The pathogen is native to East Asia and was spread to other continents via infected chestnut plants. This review summarizes the current state of research on this pathogen with a special emphasis on its interaction with a hyperparasitic mycovirus that acts as a biological control agent of chestnut blight. TAXONOMY Cryphonectria parasitica (Murr.) Barr. is a Sordariomycete (ascomycete) fungus in the family Cryphonectriaceae (Order Diaporthales). Closely related species that can also be found on chestnut include Cryphonectria radicalis, Cryphonectria naterciae and Cryphonectria japonica. HOST RANGE Major hosts are species in the genus Castanea (Family Fagaceae), particularly the American chestnut (C. dentata), the European chestnut (C. sativa), the Chinese chestnut (C. mollissima) and the Japanese chestnut (C. crenata). Minor incidental hosts include oaks (Quercus spp.), maples (Acer spp.), European hornbeam (Carpinus betulus) and American chinkapin (Castanea pumila). DISEASE SYMPTOMS Cryphonectria parasitica causes perennial necrotic lesions (so-called cankers) on the bark of stems and branches of susceptible host trees, eventually leading to wilting of the plant part distal to the infection. Chestnut blight cankers are characterized by the presence of mycelial fans and fruiting bodies of the pathogen. Below the canker the tree may react by producing epicormic shoots. Non-lethal, superficial or callusing cankers on susceptible host trees are usually associated with mycovirus-induced hypovirulence. DISEASE CONTROL After the introduction of C. parasitica into a new area, eradication efforts by cutting and burning the infected plants/trees have mostly failed. In Europe, the mycovirus Cryphonectria hypovirus 1 (CHV-1) acts as a successful biological control agent of chestnut blight by causing so-called hypovirulence. CHV-1 infects C. parasitica and reduces its parasitic growth and sporulation capacity. Individual cankers can be therapeutically treated with hypovirus-infected C. parasitica strains. The hypovirus may subsequently spread to untreated cankers and become established in the C. parasitica population. Hypovirulence is present in many chestnut-growing regions of Europe, either resulting naturally or after biological control treatments. In North America, disease management of chestnut blight is mainly focused on breeding with the goal to backcross the Chinese chestnut's blight resistance into the American chestnut genome.
Collapse
Affiliation(s)
- Daniel Rigling
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| | - Simone Prospero
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)Birmensdorf8903Switzerland
| |
Collapse
|
8
|
|
9
|
|
10
|
Vegetative incompatibility loci with dedicated roles in allorecognition restrict mycovirus transmission in chestnut blight fungus. Genetics 2014; 197:701-14. [PMID: 24690544 DOI: 10.1534/genetics.114.164574] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vegetative incompatibility (vic), a form of nonself allorecognition, operates widely in filamentous fungi and restricts transmission of virulence-attenuating hypoviruses in the chestnut blight fungus Cryphonectria parasitica. We report here the use of a polymorphism-based comparative genomics approach to complete the molecular identification of the genetically defined C. parasitica vic loci with the identification of vic1 and vic3. The vic1 locus in the C. parasitica reference strain EP155 consists of a polymorphic HET-domain-containing 771-aa ORF designated vic1a-2, which shares 91% identity with the corresponding vic1a-1 allele, and a small (172 aa) idiomorphic DUF1909-domain-containing ORF designated vic1b-2 that is absent at the vic1-1 locus. Gene disruption of either vic1a-2 or vic1b-2 in strain EP155 eliminated restrictions on virus transmission when paired with a vic1 heteroallelic strain; however, only disruption of vic1a-2 abolished the incompatible programmed cell death (PCD) reaction. The vic3 locus of strain EP155 contains two polymorphic ORFs of 599 aa (vic3a-1) and 102 aa (vic3b-1) that shared 46 and 85% aa identity with the corresponding vic3a-2 and vic3b-2 alleles, respectively. Disruption of either vic3a-1 or vic3b-1 resulted in increased virus transmission. However, elimination of PCD required disruption of both vic3a and vic3b. Additional allelic heterogeneity included a sequence inversion and a 8.5-kb insertion containing a LTR retrotransposon sequence and an adjacent HET-domain gene at the vic1 locus and a 7.7-kb sequence deletion associated with a nonfunctional, pseudo vic locus. Combined gene disruption studies formally confirmed restriction of mycovirus transmission by five C. parasitica vic loci and suggested dedicated roles in allorecognition. The relevance of these results to the acquisition and maintenance of vic genes and the potential for manipulation of vic alleles for enhanced mycovirus transmission are discussed.
Collapse
|
11
|
Branco M, Bragança H, Sousa E, Phillips AJL. Pests and Diseases in Portuguese Forestry: Current and New Threats. FOREST CONTEXT AND POLICIES IN PORTUGAL 2014. [DOI: 10.1007/978-3-319-08455-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Bahkali AH, Abd-Elsalam KA, Guo JR, Khiyami MA, Verreet JA. Characterization of novel di-, tri-, and tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on Fusaria and Mycospherella graminicola. Int J Mol Sci 2012; 13:2951-2964. [PMID: 22489135 PMCID: PMC3317696 DOI: 10.3390/ijms13032951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022] Open
Abstract
The goals of this investigation were to identify and evaluate the use of polymorphic microsatellite marker (PMM) analysis for molecular typing of seventeen plant pathogenic fungi. Primers for di-, tri-, and tetranucleotide loci were designed directly from the recently published genomic sequence of Mycospherlla graminicola and Fusarium graminearum. A total of 20 new microsatellite primers as easy-to-score markers were developed. Microsatellite primer PCR (MP-PCR) yielded highly reproducible and complex genomic fingerprints, with several bands ranging in size from 200 to 3000 bp. Of the 20 primers tested, only (TAGG)4, (TCC)5 and (CA)7T produced a high number of polymorphic bands from either F. graminearum or F. culmorum. (ATG)5 led to successful amplifications in M. graminicola isolates collected from Germany. Percentage of polymorphic bands among Fusarium species ranged from 9 to 100%. Cluster analysis of banding patterns of the isolates corresponded well to the established species delineations based on morphology and other methods of phylogenetic analysis. The current research demonstrates that the newly designed microsatellite primers are reliable, sensitive and technically simple tools for assaying genetic variability in plant pathogenic fungi.
Collapse
Affiliation(s)
- Ali H. Bahkali
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box: 2455, Riyadh 1145, Kingdom of Saudi Arabia; E-Mail:
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +966-92-1467-580; Fax: +966-1467-5833
| | - Jian-Rong Guo
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, 71737 Danzhou, Hainan, China; E-Mail: (J.-R.G.)
| | - Mohamed A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia; E-Mail:
| | - Joseph-Alexander Verreet
- Institute of Phytopathology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 9, D-24118, Kiel, Germany; E-Mail: (J.-A.V.)
| |
Collapse
|