1
|
Thai HD, Trinh MT, Do LTBX, Le TH, Nguyen DT, Tran QT, Tran VKT, Mai LTD, Pham DN, Le DH, Vu TX, Tran VT. Gene function characterization in Aspergillus niger using a dual resistance marker transformation system mediated by Agrobacterium tumefaciens. J Microbiol Methods 2024; 224:106989. [PMID: 38996925 DOI: 10.1016/j.mimet.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Minh Thi Trinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thu-Hang Le
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Thanh Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Que Thi Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Khanh Tong Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Linh Thi Dam Mai
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Ngoc Pham
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Diep Hong Le
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
2
|
Tran VT, Thai HD, Vu TX, Vu HH, Nguyen GT, Trinh MT, Tran HTT, Pham HTT, Le NTH. An efficient Agrobacterium-mediated system based on the pyrG auxotrophic marker for recombinant expression in the filamentous fungus Penicillium rubens. Biotechnol Lett 2023; 45:689-702. [PMID: 37071381 DOI: 10.1007/s10529-023-03374-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum). RESULTS In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 106 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens. CONCLUSIONS The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.
Collapse
Affiliation(s)
- Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam
| | - Ha Hong Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Giang Thu Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Minh Thi Trinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Huong Thi Thu Pham
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Nhung Thi Hong Le
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
3
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
5
|
Screening and Functional Verification of Selectable Marker Genes for Cordyceps militaris. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6687768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The selectable marker genes are necessary resistance genes for gene knockout, gene complementation, and gene overexpression in filamentous fungi. Moreover, the more sensitive the filamentous fungi are to antibiotics, the more helpful it is to screen the target transformants. In order to obtain the antibiotic (or herbicide) which can effectively inhibit the growth of Cordyceps militaris and verify the function of the corresponding resistance gene in C. militaris, the sensitivity of C. militaris to hygromycin and glufosinate ammonium was compared to determine the resistance gene that was more suitable for the screening of C. militaris transformants. The binary vector of the selectable marker gene was constructed by combining the double-joint PCR (DJ-PCR) method and the homologous recombination method, and the function of the selectable marker gene in C. militaris was verified by the Agrobacterium tumefaciens-mediated transformation method. The results showed that C. militaris was more sensitive to glufosinate ammonium than hygromycin. The growth of C. militaris could be completely inhibited by 250 μg/mL glufosinate ammonium. The expression cassette of the glufosinate ammonium resistance gene (bar gene) was successfully constructed by DJ-PCR. The binary vector pCAMBIA0390-Bar was successfully constructed by homologous recombination. The bar gene of the vector pCAMBIA0390-Bar was successfully integrated into the C. militaris genome and could be highly expressed in the transformants of C. militaris. This study will promote the identification of C. militaris gene function and reveal the biosynthetic pathways of bioactive components in C. militaris.
Collapse
|
6
|
Wang Y, Yang X, Chen P, Yang S, Zhang H. Homologous overexpression of genes in Cordyceps militaris improves the production of polysaccharides. Food Res Int 2021; 147:110452. [PMID: 34399454 DOI: 10.1016/j.foodres.2021.110452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 11/15/2022]
Abstract
The maximum yield of EPS produced by mutant CM-pgm-H was 4.63 ± 0.23 g/L, whereas the yield of wild-type strain was 3.43 ± 0.26 g/L. In addition, the data obtained in the present study indicated that the yield of EPS produced by the engineered strain treated with the co-overexpression of phosphoglucomutase and UDP-glucose 6-dehydrogenase genes achieved 6.11 ± 0.21 g/L, which was increased by 78.13% compared with that by the wild-type strain. CM-pgm-H obtained the highest EPS content than that of gk, ugp, and ugdh mutants. This result indicated that the content of protein phosphoglucomutase was an important influencing factor on the CP production of C. militaris. Furthermore, the EPS production of CM-ugdh-pgm-M was significantly improved by 1.78-fold by co-overexpression. Therefore, our engineering strategies will play an important role in the development of C. militaris for the sustainable production of Cordyceps polysaccharides.
Collapse
Affiliation(s)
- Yifeng Wang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xi Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ping Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China.
| |
Collapse
|
7
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|