1
|
Piątek M, Stryjak-Bogacka M, Czachura P. Emended Neodactylariales (Dothideomycetes): Szaferohypha gen. nov. and phylogenetically related genera. MycoKeys 2024; 111:211-228. [PMID: 39758429 PMCID: PMC11699514 DOI: 10.3897/mycokeys.111.139620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Epiphytic fungi evolved several times in Dothideomycetes, particularly within the orders Asterinales, Capnodiales, Microthyriales, and Zeloasperisporiales, but also in other, less obvious lineages. In this study, a new genus and species, Szaferohypha and S.enigmatica, isolated from the sooty mould community on the leaves of Symphoricarposalbus in Poland, are described based on morphology and phylogenetic analysis using sequences of four DNA loci (LSU, ITS, SSU, and rpb2). Due to single isolation, it is unclear whether Szaferohyphaenigmatica represents a very rare or accidental inhabitant of sooty mould communities. Szaferohypha is assigned to the poorly known family Neodactylariaceae and order Neodactylariales, together with Beaucarneamyces, Neodactylaria, and Pseudoarthrographis. The order and family were originally circumscribed based on the features of the genus Neodactylaria. Therefore, they are emended by characters of Beaucarneamyces, Pseudoarthrographis, and Szaferohypha.
Collapse
Affiliation(s)
- Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Monika Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandPolish Academy of SciencesKrakówPoland
| |
Collapse
|
2
|
Liu NG, Hyde KD, Sun YR, Bhat DJ, Jones EBG, Jumpathong J, Lin CG, Lu YZ, Yang J, Liu LL, Liu ZY, Liu JK. Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes. FUNGAL DIVERS 2024; 129:1-281. [DOI: 10.1007/s13225-024-00539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2024] [Indexed: 01/05/2025]
|
3
|
Piątek M, Stryjak-Bogacka M, Czachura P. Arthrocatenales, a new order of extremophilic fungi in the Dothideomycetes. MycoKeys 2024; 108:47-74. [PMID: 39220356 PMCID: PMC11362667 DOI: 10.3897/mycokeys.108.128033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The widely treated order Capnodiales is one of the most important orders in the class Dothideomycetes. Recently, the order Capnodiales s. lat. was reassessed and split into seven orders (Capnodiales s. str., Cladosporiales, Comminutisporales, Mycosphaerellales, Neophaeothecales, Phaeothecales and Racodiales) based on multi-locus phylogeny, morphology and life strategies. In this study, two Arthrocatena strains isolated from sooty mould communities on the leaves of Tiliacordata and needles of Pinusnigra in southern Poland were analyzed. Multi-locus phylogenetic analyses (ITS-LSU-SSU-rpb2-tef1) along with morphological examination showed that they belong to Capnobotryellaantalyensis, which represents a sister taxon to Arthrocatenatenebrosa. Capnobotryellaantalyensis is a rock-inhabiting fungus described from Turkey. The following new combination is proposed: Arthrocatenaantalyensis. Phylogenetic analyses also showed that Arthrocatena and related genus Hyphoconis, both known previously only from rocks, form a sister lineage to orders Cladosporiales and Comminutisporales. The new order Arthrocatenales and new family Arthrocatenaceae are proposed to this clade. Representatives of this order are extremophilic fungi that live on rocks and in sooty mould communities.
Collapse
Affiliation(s)
- Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| | - Monika Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
| |
Collapse
|
4
|
Xian F, Yang L, Ye H, Xu J, Yue X, Wang X. Revealing the Mechanism of Aroma Production Driven by High Salt Stress in Trichomonascus ciferrii WLW. Foods 2024; 13:1593. [PMID: 38890822 PMCID: PMC11172348 DOI: 10.3390/foods13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Douchi is a Chinese traditional fermented food with a unique flavor. Methyl anthranilate (MA) plays an important role in formation of this flavor. However, the complicated relationship between the MA formation and the metabolic mechanism of the key functional microorganisms remains unclear. Here, we elucidated the response mechanism of aroma production driven by high salt stress in Trichomonascus ciferrii WLW (T. ciferrii WLW), which originates from the douchi fermentation process. The highest production of MA was obtained in a 10% NaCl environment. The enhanced expression of the key enzyme genes of the pentose phosphate pathway and shikimic acid pathway directed carbon flow toward aromatic amino acid synthesis and helped sustain an increased expression of metK to synthesize a large amount of the methyl donor S-adenosylmethionine, which promoted methyl anthranilate yield. This provides a theoretical basis for in-depth research on the applications of the flavor formation mechanisms of fermented foods.
Collapse
Affiliation(s)
- Fangying Xian
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Lin Yang
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Huaqing Ye
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Jinlin Xu
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| | - Xiaoping Yue
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolan Wang
- School of Life Science (Health), Jiangxi Normal University, Nanchang 330022, China; (F.X.); (L.Y.); (H.Y.); (J.X.)
| |
Collapse
|
5
|
Gostinčar C, Gunde-Cimerman N. Black yeasts in hypersaline conditions. Appl Microbiol Biotechnol 2024; 108:252. [PMID: 38441672 PMCID: PMC10914880 DOI: 10.1007/s00253-024-13052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.
Collapse
Affiliation(s)
- Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Piątek M, Stryjak-Bogacka M, Czachura P, Owczarek-Kościelniak M. The genus Rachicladosporium: introducing new species from sooty mould communities and excluding cold adapted species. Sci Rep 2023; 13:22795. [PMID: 38129458 PMCID: PMC10739867 DOI: 10.1038/s41598-023-49696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The fungal genus Rachicladosporium (Cladosporiales, Cladosporiaceae), typified by cladosporium-like Rachicladosporium luculiae, includes a morphologically diverse assemblage of species. The species of this genus were reported from different substrates, habitats and environments, including plant leaves and needles, twig, black mould on baobab trees, rocks and insects. In this study, four new Rachicladosporium species (R. europaeum, R. ignacyi, R. kajetanii, R. silesianum) isolated from sooty mould communities covering leaves and needles of trees and shrubs in Poland are described. The new species are delineated based on morphological characteristics and molecular phylogenetic analyses using concatenated ITS, LSU, and rpb2 sequences. All newly described species are nested in the main Rachicladosporium lineage (centred around the type species), which contains species that are able to grow at 25 °C. By contrast, four cold adapted, endolithic species known from Antarctica (R. antarcticum, R. aridum, R. mcmurdoi) and Italian Alps (R. monterosanum) form distant phylogenetic lineage and do not grow at this temperature. Therefore, they are accommodated in the new genus Cryoendolithus, typified by Cryoendolithus mcmurdoi.
Collapse
Affiliation(s)
- Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Monika Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Magdalena Owczarek-Kościelniak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
- Norwegian Veterinary Institute, P.O. Box 64, 1431, Ås, Norway
| |
Collapse
|
7
|
Paiva DS, Trovão J, Fernandes L, Mesquita N, Tiago I, Portugal A. Expanding the Microcolonial Black Fungi Aeminiaceae Family: Saxispiralis lemnorum gen. et sp. nov. ( Mycosphaerellales), Isolated from Deteriorated Limestone in the Lemos Pantheon, Portugal. J Fungi (Basel) 2023; 9:916. [PMID: 37755024 PMCID: PMC10533162 DOI: 10.3390/jof9090916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
With an impressive ability to survive in harsh environments, black fungi are an ecological group of melanized fungi that are widely recognized as a major contributor to the biodeterioration of stone cultural heritage materials. As part of the ongoing efforts to study the fungal diversity thriving in a deteriorated limestone funerary art piece at the Lemos Pantheon, a national monument located in Águeda, Portugal, two isolates of an unknown microcolonial black fungus were retrieved. These isolates were thoroughly studied through a comprehensive analysis based on a multi-locus phylogeny of a combined dataset of ITS rDNA, LSU, and rpb2, along with morphological, physiological, and ecological characteristics. Based on the data obtained from this integrative analysis, we propose a new genus, Saxispiralis gen. nov., and a new species, Saxispiralis lemnorum sp. nov., in the recently described Aeminiaceae family (order Mycosphaerellales). Prior to this discovery, this family only had one known genus and species, Aeminium ludgeri, also isolated from deteriorated limestone. Additionally, considering the isolation source of the fungus and to better understand its potential contribution to the overall stone monument biodeterioration, its in vitro biodeteriorative potential was also evaluated. This work represents a significant contribution to the understanding of the fungal diversity involved in the biodeterioration of limestone heritage.
Collapse
Affiliation(s)
- Diana S. Paiva
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Trovão
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís Fernandes
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Nuno Mesquita
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Igor Tiago
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - António Portugal
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- FitoLab—Laboratory for Phytopathology, Instituto Pedro Nunes (IPN), Rua Pedro Nunes, 3030-199 Coimbra, Portugal
- TERRA—Associate Laboratory for Sustainable Land Use and Ecosystem Services, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
8
|
Black Fungi and Stone Heritage Conservation: Ecological and Metabolic Assays for Evaluating Colonization Potential and Responses to Traditional Biocides. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying species involved in biodeterioration processes is helpful, however further effort is needed to assess their ecological requirements and actual activity. Black fungi (BF) represent one of the most underestimated threats to stone cultural heritage in the Mediterranean basin; they are difficult to kill or remove due to their ability to grow inside the rock and cope with several stresses. Despite this, little is known about BF and factors favoring their growth on stone surfaces. Eighteen BF species were here investigated for temperature and salt tolerance, and metabolic traits by plate assays. The relation between some highly damaged monuments and their BF settlers was assessed using X-ray diffraction analysis, mercury intrusion porosimetry, and SEM. The sensitiveness to four commonly used traditional biocides was also tested. All strains were able to grow within the range of 5–25 °C and in the presence of 3.5% NaCl. Instrumental analyses were fundamental in discovering the relation between halophilic strains and weathered marble sculptures. The acid, cellulase, esterase, and protease production recorded proved BF’s potential to produce a chemical action on carbonate stones and likely affect other materials/historical artefacts. Besides, the use of carboxymethylcellulose and Tween 20 should be evaluated in restoration practice to prevent tertiary bioreceptivity. Agar diffusion tests helped identify the most resistant species to biocides, opening the perspective of its use as reference organisms in material testing procedures.
Collapse
|