1
|
Clarke J, Kosanovic D, Kavanagh K, Grogan H, Fitzpatrick DA. Draft genome sequence of the fungal biocontrol agent, Bacillus velezensis Kos. Microbiol Resour Announc 2024; 13:e0057524. [PMID: 39189725 PMCID: PMC11465862 DOI: 10.1128/mra.00575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
Here, we report the draft genome sequence of Bacillus velezensis strain Kos, isolated from casing soil used during Agaricus bisporus cultivation in Dublin, Ireland. B. velezensis Kos exhibits a suppressive ability toward Cladobotryum mycophilum, Trichoderma aggressivum, and Lecanicillium fungicola, which are common threats to A. bisporus production, cultivation, and quality.
Collapse
Affiliation(s)
- Joy Clarke
- Department of Biology, Maynooth University, Maynooth, Ireland
- Horticulture Development Department, Teagasc, Dublin, Ireland
| | | | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Helen Grogan
- Horticulture Development Department, Teagasc, Dublin, Ireland
| | | |
Collapse
|
2
|
Chen Q, Yuan Y, Chen G, Li N, Li X, Lan Y, Wang H. Evaluating Two Fungicides, Prochloraz-Manganese Chloride Complex and Seboctylamine Acetate, to Control Cobweb Disease in White Button Mushroom Caused by Cladobotryum mycophilum. J Fungi (Basel) 2024; 10:676. [PMID: 39452628 PMCID: PMC11508822 DOI: 10.3390/jof10100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Cobweb disease in white button mushroom (Agaricus bisporus) is a newly identified disease caused by Cladobotryum mycophilum in China. Currently, there are few highly effective and safe fungicides for controlling this disease in the field. This study assessed the fungicidal effect of prochloraz-manganese chloride complex and seboctylamine acetate against C. mycophilum, as well as their ability to control cobweb disease. Additionally, the residues of these fungicides in the mycelium and the mushroom were evaluated. The extent of the fungicidal effect against the pathogen was determined based on the efficiency of crop production. The results revealed that, in addition to the potent inhibitory effect of prochloraz-manganese chloride complex on the hyphae of C. mycophilum, the domestically developed seboctylamine acetate exhibited high toxicity, inhibiting both mycelial growth and spore germination of C. mycophilum, with EC50 values of 0.990 mg/L and 0.652 mg/L, respectively. Furthermore, the application of the two chemical agents had no adverse effects on the mycelial growth and fruiting body growth of A. bisporus, and the residual amount of chemical agent was lower than the maximum residue limit standard. The field application results showed that 400 mg/L of prochloraz-manganese chloride complex and 6 mg/L of seboctylamine acetate resulted in 61.38% and 81.17% disease control respectively. This study presents efficient and safe fungicides for controlling cobweb disease in white button mushroom. Additionally, a residue determination analysis of the fungicide seboctylamine acetate in mushroom crops is described.
Collapse
Affiliation(s)
- Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| | - Yazhen Yuan
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| | - Gang Chen
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| | - Ning Li
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| | - Xinrong Li
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| | - Yufei Lan
- Tai’an Academy of Agricultural Sciences, Tai’an 271018, China;
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (Q.C.); (G.C.); (N.L.); (X.L.)
| |
Collapse
|
3
|
Hwang SH, Maung CEH, Noh JS, Cho JY, Kim KY. Butyl succinate-mediated control of Bacillus velezensis ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides. J Appl Microbiol 2023; 134:lxad247. [PMID: 37903743 DOI: 10.1093/jambio/lxad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/01/2023]
Abstract
AIMS Microbial biocontrol agents have become an effective option to mitigate the harmfulness of chemical pesticides in recent years. This study demonstrates the control efficacy of Bacillus velezensis CE 100 on the anthracnose causal agent, Colletotrichum gloeosporioides. METHODS AND RESULTS In vitro antifungal assays revealed that the culture filtrate and volatile organic compounds of B. velezensis CE 100 strongly restricted the mycelial development of C. gloeosporioides. Moreover, a bioactive compound, butyl succinate, was isolated from the n-butanol crude extract of B. velezensis CE 100 (bce), and identified by liquid chromatography-electrospray ionization hybrid ion-trap and time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). Treatment with purified butyl succinate at a concentration of 300 μg mL-1 strongly controlled conidial germination of C. gloeosporioides with an inhibition rate of 98.66%, whereas butyl succinate at a concentration of 400 μg mL-1 showed weak antifungal action on the mycelial growth of C. gloeosporioides with an inhibition rate of 31.25%. Scanning electron microscopy revealed that the morphologies of butyl succinate-treated hyphae and conidia of C. gloeosporioides were severely deformed with shriveled and wrinkled surfaces. Furthermore, butyl succinate was able to control carbendazim-resistant C. gloeosporioides, demonstrating that it could be a promising agent for the suppression of other carbendazim-resistant fungal pathogens. An in vivo biocontrol assay demonstrated that the strain ce 100 broth culture and butyl succinate showed higher control efficacy on apple anthracnose than bce. CONCLUSIONS Our findings provide insight into the antifungal potential of B. velezensis ce 100 and its butyl succinate for efficient control of phytopathogenic fungi, such as C. gloeosporiodes, in plant disease protection. This is the first study to demonstrate the antifungal potential of bacteria-derived butyl succinate for control of C. gloeosporioides.
Collapse
Affiliation(s)
- Seo Hyun Hwang
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chaw Ei Htwe Maung
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Su Noh
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kil Yong Kim
- Department of Agricultural and Biological Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
5
|
Clarke J, Grogan H, Fitzpatrick D, Kavanagh K. Characterising the proteomic response of mushroom pathogen Lecanicillium fungicola to Bacillus velezensis QST 713 and Kos biocontrol agents. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2022; 163:369-379. [PMID: 35602973 PMCID: PMC9110487 DOI: 10.1007/s10658-022-02482-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED The fungal pathogen Lecanicillium fungicola causes dry bubble disease in Agaricus bisporus cultivation and affected mushrooms significantly reduce the yield and revenue for mushroom growers. Biocontrol agents may represent an alternative and more environmentally friendly treatment option to help control dry bubble on mushroom farms. Serenade ® is a commercially available biocontrol product used for disease treatment in plant crops. In this work, the in vitro response of L. fungicola to the bacterial strain active in Serenade, Bacillus velezensis (QST 713) and a newly isolated B. velezensis strain (Kos) was assessed. B. velezensis (QST713 and Kos) both produced zones of inhibition on plate cultures of L. fungicola, reduced the mycelium growth in liquid cultures and damaged the morphology and structure of L. fungicola hyphae. The proteomic response of the pathogen against these biocontrol strains was also investigated. Proteins involved in growth and translation such as 60S ribosomal protein L21-A (-32-fold) and 40S ribosomal protein S30 (-17-fold) were reduced in abundance in B. velezensis QST 713 treated samples, while proteins involved in a stress response were increased (norsolorinic acid reductase B (47-fold), isocitrate lyase (11-fold) and isovaleryl-CoA dehydrogenase (8-fold). L. fungicola was found to have a similar proteomic response when exposed to B. velezensis (Kos). This work provides information on the response of L. fungicola to B. velezensis (QST 713) and indicates the potential of B. velezensis Kos as a novel biocontrol agent. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10658-022-02482-1.
Collapse
Affiliation(s)
- Joy Clarke
- Department of Biology, Maynooth University, Maynooth, Kildare Ireland
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - David Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Kildare Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Kildare Ireland
| |
Collapse
|