1
|
Turnau K, Pajdak-Stós A, Korzh Y, Domka A, Bień-Kostycz P, Fiałkowska E. Biological control of predatory fungi inhabiting activated sludge in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120572. [PMID: 38493643 DOI: 10.1016/j.jenvman.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The unfavorable phenomenon of activated sludge bulking that occurs in sewage treatment plants (WWTPs) is caused by the over-proliferation of filamentous bacteria that should be limited by the Lecane rotifers that feed on them; however, predatory, rotiferovorous fungi that often inhabit WWTPs pose a real threat to these organisms. To solve this problem, we investigated the interaction of the fungus Clonostachys rosea, which is a known Biological Control Agent (BCA) and the predacious Zoophagus sp. in simplified laboratory culture conditions. The presence of C. rosea in the cultures reduced the number of active traps, thus translating into a much smaller number of rotifers being caught. The mycelium of C. rosea was labeled with a red fluorescent protein (RFP). The life cycle of C. rosea that were attacking Zoophagus sp. (hunting for rotifers) is described. C. rosea spores germinate into single-celled forms and penetrate the interior of the Zoophagus mycelium where they feed on the cytoplasm. Then is the mycelium produced abundantly and forms conidiophores. This type of life strategy has not been known before. The obtained results demonstrated the potential of C. rosea as a BCA that can be used to protect rotifers in the event of an infection of activated sludge by the predatory fungi that threaten the rotifer population.
Collapse
Affiliation(s)
- Katarzyna Turnau
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Yuliia Korzh
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland; Institute of Microbiology and Virology named after D.K. Zabolotny National, Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Agnieszka Domka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland
| | - Patrycja Bień-Kostycz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Fiałkowska E, Górska-Andrzejak J, Pajdak-Stós A. The role of environmental factors in the conidiation of the predacious rotiferovorous fungus Zoophagus insidians (Zoopagomycota). FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Fiałkowska E, Fiałkowski W, Wilson CG, Pajdak-Stós A. Effects of polyaluminum chloride (PAX-18) on the relationship between predatory fungi and Lecane rotifers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17671-17681. [PMID: 34674125 PMCID: PMC8873159 DOI: 10.1007/s11356-021-16952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
PAX-18 (polyaluminum chloride) is frequently used in WWTPs (wastewater treatment plants) to overcome sludge bulking. An alternative biological method is the usage of Lecane rotifers, which can be endangered by predacious fungi. We investigated the influence of different PAX-18 concentrations on the relationship between Lecane inermis and predacious fungi (Zoophagus and Lecophagus) differing in feeding mode. High PAX concentration (6 mg Al3+ L-1) strongly limited the number of the rotifers, which in low concentration (1.2 mg Al3+ L-1), after an initial decline, increased, but significantly slower than in control. Under the simultaneous influence of Lecophagus and PAX, rotifers were driven almost extinct at the high concentration, but survived at the lower concentration and increased in the control. When treated with Zoophagus, only one or two rotifers survived in treatments and control. High concentrations of PAX significantly restricted the growth of fungi, whereas in low concentrations and control conditions, their length increased, with Zoophagus growing much quicker than Lecophagus. Zoophagus was significantly more efficient in trapping rotifers regardless of PAX concentration. The trapping ability of mycelium following extended exposure to PAX was strongly limited at high concentrations, in comparison to control. Conidia of Zoophagus turned out to be considerably more resistant to PAX-18 and starvation than Lecophagus conidia.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Wojciech Fiałkowski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Christopher G Wilson
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
4
|
Eckert EM, Anicic N, Fontaneto D. Freshwater zooplankton microbiome composition is highly flexible and strongly influenced by the environment. Mol Ecol 2021; 30:1545-1558. [PMID: 33484584 DOI: 10.1111/mec.15815] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The association with microbes in plants and animals is known to be beneficial for host's survival and fitness, but the generality of the effect of the microbiome is still debated. For some animals, similarities in microbiome composition reflect taxonomic relatedness of the hosts, a pattern termed phylosymbiosis. The mechanisms behind the pattern could be due to co-evolution and/or to correlated ecological constraints. General conclusions are hampered by the fact that available knowledge is highly dominated by microbiomes from model species. Here, we addressed the issue of the generality of phylosymbiosis by analysing the species-specificity of microbiomes across different species of freshwater zooplankton, including rotifers, cladocerans, and copepods, coupling field surveys and experimental manipulations. We found that no signal of phylosymbiosis was present, and that the proportion of "core" microbial taxa, stable and consistent within each species, was very low. Changes in food and temperature under laboratory experimental settings revealed that the microbiome of freshwater zooplankton is highly flexible and can be influenced by the external environment. Thus, the role of co-evolution, strict association, and interaction with microbes within the holobiont concept highlighted for vertebrates, corals, sponges, and other animals does not seem to be supported for all animals, at least not for freshwater zooplankton. Zooplankton floats in the environment where both food and bacteria that can provide help in digesting such food are available. In addition, there is probably redundancy for beneficial bacterial functions in the environment, not allowing a strict host-microbiome association to originate and persist.
Collapse
Affiliation(s)
- Ester M Eckert
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| | - Nikoleta Anicic
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy.,Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - Diego Fontaneto
- MEG- Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, Italy
| |
Collapse
|
5
|
Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G. Extraordinary Multi-Organismal Interactions Involving Bacteriophages, Bacteria, Fungi, and Rotifers: Quadruple Microbial Trophic Network in Water Droplets. Int J Mol Sci 2021; 22:ijms22042178. [PMID: 33671687 PMCID: PMC7926626 DOI: 10.3390/ijms22042178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/01/2022] Open
Abstract
Our observations of predatory fungi trapping rotifers in activated sludge and laboratory culture allowed us to discover a complicated trophic network that includes predatory fungi armed with bacteria and bacteriophages and the rotifers they prey on. Such a network seems to be common in various habitats, although it remains mostly unknown due to its microscopic size. In this study, we isolated and identified fungi and bacteria from activated sludge. We also noticed abundant, virus-like particles in the environment. The fungus developed absorptive hyphae within the prey. The bacteria showed the ability to enter and exit from the hyphae (e.g., from the traps into the caught prey). Our observations indicate that the bacteria and the fungus share nutrients obtained from the rotifer. To narrow the range of bacterial strains isolated from the mycelium, the effects of bacteria supernatants and lysed bacteria were studied. Bacteria isolated from the fungus were capable of immobilizing the rotifer. The strongest negative effect on rotifer mobility was shown by a mixture of Bacillus sp. and Stenotrophomonas maltophilia. The involvement of bacteriophages in rotifer hunting was demonstrated based on molecular analyses and was discussed. The described case seems to be an extraordinary quadruple microbiological puzzle that has not been described and is still far from being understood.
Collapse
Affiliation(s)
- Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48-506-006-642
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Rafał Ważny
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7a, 30-387 Krakow, Poland; (R.W.); (P.R.)
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7a, 30-387 Krakow, Poland; (R.W.); (P.R.)
| | - Grzegorz Tylko
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland; (S.B.); (A.W.)
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| | - Michał Grabski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland; (S.B.); (A.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| |
Collapse
|
6
|
Fiałkowska E, Fiałkowski W, Pajdak-Stós A. The Relations Between Predatory Fungus and Its Rotifer Preys as a Noteworthy Example of Intraguild Predation (IGP). MICROBIAL ECOLOGY 2020; 79:73-83. [PMID: 31236611 PMCID: PMC6957569 DOI: 10.1007/s00248-019-01398-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Intraguild predation (IGP) is a widespread interaction combining predation and competition. We investigated a unique IGP example among predacious fungus Zoophagus sp. and two rotifers, the predacious Cephalodella gibba and the common prey Lecane inermis. We checked the influence of the fungus on its competitor C. gibba and their joint influence on shared prey L. inermis, and the impact of the competitive predator on the growth of predacious fungus. The experiment on grown mycelium showed that Zoophagus strongly, negatively influences the growth of C. gibba (intermediate consumer) whose number did not increase throughout the experiment. The intermediate consumer was also trapped by Zoophagus and become extinct when it was its only prey, whereas in the absence of the fungus and with unlimited access to prey, its number grew quickly. As only few C. gibba were trapped by fungi when common preys were present, competition for food seems to have stronger effect on intermediate consumer population than predation. The experiment with conidia of the fungus showed that intermediate consumer significantly limits the growth of Zoophagus by reducing the number of available prey. It was observed that although the fungus can trap C. gibba, the latter does not support its growth. Trapping the intermediate consumer might serve to eliminate a competitor rather than to find a source of food. The chances of survival for L. inermis under the pressure of the two competing predators are scarce. It is the first example of IGP involving representatives of two kingdoms: Fungi and Animalia.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Faculty of Biology, Institute of Environmental Sciences, Aquatic Ecosystems Group, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Wojciech Fiałkowski
- Faculty of Biology, Institute of Environmental Sciences, Aquatic Ecosystems Group, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Pajdak-Stós
- Faculty of Biology, Institute of Environmental Sciences, Aquatic Ecosystems Group, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
7
|
Highly diverse fungal communities in carbon-rich aquifers of two contrasting lakes in Northeast Germany. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Fiałkowska E, Pajdak-Stós A. Temperature-Dependence of Predator-Prey Dynamics in Interactions Between the Predatory Fungus Lecophagus sp. and Its Prey L. inermis Rotifers. MICROBIAL ECOLOGY 2018; 75:400-406. [PMID: 28963577 PMCID: PMC5742607 DOI: 10.1007/s00248-017-1060-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature is considered an important factor that influences the bottom-up and top-down control in water habitats. We examined the influence of temperature on specific predatory-prey dynamics in the following two-level trophic system: the predatory fungus Lecophagus sp. and its prey Lecane inermis rotifers, both of which originated from activated sludge obtained from a wastewater treatment plant (WWTP). The experiments investigating the ability of conidia to trap rotifers and the growth of fungal mycelium were performed in a temperature range that is similar to that in WWTPs in temperate climate. At 20 °C, 80% of the conidia trapped the prey during the first 24 h, whereas at 8 °C, no conidium was successful. The mycelium growth rate was the highest at 20 °C (r = 1.44) during the first 48 h but decreased during the following 24 h (r = 0.98), suggesting the quickest use of resources. At a medium temperature of 15 °C, the tendency was opposite, and the r value was lower during the first 48 h. At 8 °C, the growth rate was very low and remained at the same level even though numerous active rotifers were potentially available for the fungus. The temperature also influences the production of new conidia; on the 7th day, new conidia were observed in 96% of the wells at 20 °C, but no new conidia were observed at 8°C. These results show that the prey (rotifers)-predator (Lecophagus) dynamics in WWTPs is temperature-dependent, and a temperature of 8 °C is a strongly limiting factor for the fungus. Moderate temperatures ensure the most stable coexistence of the fungus and its prey, whereas the highest temperature can promote the prevalence of the predator.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
9
|
Corsaro D, Köhsler M, Wylezich C, Venditti D, Walochnik J, Michel R. New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales). Parasitol Res 2017; 117:157-167. [PMID: 29170872 DOI: 10.1007/s00436-017-5685-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Amoebophagous fungi are represented in all fungal groups: Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. The amoebophagous fungi, within the zygomycota (Zoopagales, Zoopagomycota), mainly affect naked amoebae as ectoparasites or endoparasites. It is rather difficult to isolate members of the Zoopagales, because of their parasitic lifestyle, and to bring them into culture. Consequently, gene sequences of this group are undersampled, and its species composition and phylogeny are relatively unknown. In the present study, we were able to isolate amoebophagous fungi together with their amoeba hosts from various habitats (moss, pond, bark, and soil). Altogether, four fungal strains belonging to the genera Acaulopage and Stylopage plus one unidentified isolate were detected. Sequences of the 18S rDNA and the complete ITS region and partial 28S (LSU) rDNA were generated. Subsequent phylogenetic analyses showed that all new isolates diverge at one branch together with two environmental clonal sequences within the Zoopagomycota. Here, we provide the first molecular characterization of the genus Stylopage. Stylopage is closely related to the genus Acaulopage. In addition, taxonomy and phylogeny of amoebophagous fungi and their ecological importance are reviewed based on new sequence data, which includes environmental clonal sequences.
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Martina Köhsler
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Danielle Venditti
- Chlamydia Research Association (CHLAREAS), 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.,TREDI Research Department, Faculty of Medicine, Technopôle de Nancy-Brabois, 9, Avenue de la Forêt de Haye, B.P. 184, 54505, Vandœuvre-lès-Nancy, France
| | - Julia Walochnik
- Molecular Parasitology, Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Rolf Michel
- Central Institute of the Federal Armed Forces Medical Services, P.O. Box 7340, D 56070, Koblenz, Germany
| |
Collapse
|
10
|
Pajdak-Stós A, Kocerba-Soroka W, Fyda J, Sobczyk M, Fiałkowska E. Foam-forming bacteria in activated sludge effectively reduced by rotifers in laboratory- and real-scale wastewater treatment plant experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13004-13011. [PMID: 28378311 PMCID: PMC5418312 DOI: 10.1007/s11356-017-8890-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/20/2017] [Indexed: 05/05/2023]
Abstract
Lecane inermis rotifers were shown to diminish sludge bulking due to their ability to ingest the filamentous bacteria in activated sludge. To determine if rotifers are also able to control branched actinomycetes, we investigated three other Lecane species (Monogononta). In a week-long experiment, only Lecane tenuiseta significantly reduced the density of Microthrix parvicella and Type 0092 filaments, but in a 2-week experiment, actinomycetes were significantly reduced by most of the tested monogonont rotifers: L. inermis, Lecane decipiens and Lecane pyriformis. Rotifers L. inermis originating from the mass culture were artificially introduced into real-scale wastewater treatment plant (WWTP) in two series. The WWTP was monitored for 1 year. Rotifer inoculation resulted in diminishing of M. parvicella and actinomycete abundance. The experiments showed that different species of rotifers vary in their effectiveness at limiting various types of filamentous organisms. This is the first report demonstrating that one of the most troublesome bacteria, branched actinomycetes, which cause heavy foaming in bioreactors, can be controlled by rotifers. Knowledge of the consumers of filamentous bacteria that inhabit activated sludge could help WWTP operators overcome bulking and foaming through environmentally friendly methods.
Collapse
Affiliation(s)
- Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Wioleta Kocerba-Soroka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Janusz Fyda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Mateusz Sobczyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|