1
|
Ndinga-Muniania C, Wornson N, Fulcher MR, Borer ET, Seabloom EW, Kinkel L, May G. Cryptic functional diversity within a grass mycobiome. PLoS One 2023; 18:e0287990. [PMID: 37471328 PMCID: PMC10358963 DOI: 10.1371/journal.pone.0287990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.
Collapse
Affiliation(s)
- Cedric Ndinga-Muniania
- Plant and Microbial Biology Graduate Program, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicholas Wornson
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael R Fulcher
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Frederick, Maryland, United States of America
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Linda Kinkel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Bhardwaj N, Kumar A. Biocontrol Screening of Endophytes: Applications and Limitations. PLANTS (BASEL, SWITZERLAND) 2023; 12:2480. [PMID: 37447041 DOI: 10.3390/plants12132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.
Collapse
Affiliation(s)
- Nikhil Kashyap
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nisha Yadav
- Division of Agriculture Extension, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur 247001, India
| | - Ajay Kumar
- Department of Botany, M.V. College, Buxar 802101, India
| |
Collapse
|