1
|
Guo P, Wang D, Li Y, Wang R, Xu H, Han J, Lyu J. Do visual and step height factors cause imbalance during bipedal and unipedal stances? A plantar pressure perspective. Front Bioeng Biotechnol 2023; 11:1253056. [PMID: 37662431 PMCID: PMC10470124 DOI: 10.3389/fbioe.2023.1253056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: The plantar pressure analysis technique was used to explore the static balance ability and stability of healthy adult males under the influence of visual and step height factors during bipedal and unipedal stances. Methods: Thirty healthy adult males volunteered for the study. Experiments used the F-scan plantar pressure analysis insoles to carry out with eyes open (EO) and eyes closed (EC) at four different step heights. The plantar pressure data were recorded for 10 s and pre-processed to derive kinematic and dynamic parameters. Results: For unipedal stance, most of kinematic parameters of the subjects' right and left feet were significantly greater when the eyes were closed compared to the EO condition and increased with step height. The differences in toe load between right and left feet, open and closed eyes were extremely statistically significant (p < 0.001). The differences in midfoot load between the EO and EC conditions were statistically significant (p = 0.024) and extremely statistically significant between the right and left feet (p < 0.001). The difference in rearfoot load between EO and EC conditions was extremely statistically significant (p < 0.001) and statistically significant (p = 0.002) between the right and left feet. For bipedal stance, most of kinematic parameters of the subjects' EO and EC conditions were statistically significant between the right and left feet and increased with step height. The overall load's difference between EO and EC states was statistically significant (p = 0.003) for both feet. The overall load's difference between the right and left feet was extremely statistically significant (p < 0.001) in the EC state. The differences between the right and left feet of the forefoot and rearfoot load with EO and EC suggested that the right foot had a smaller forefoot load, but a larger rearfoot load than the left foot (p < 0.001). The differences between the forefoot and rearfoot load of the subjects' both feet with EO and EC were extremely statistically significant (p < 0.001). Conclusion: Both visual input and step height factors, even the dominant foot, act on kinematic and dynamic parameters that affect the maintenance of static balance ability.
Collapse
Affiliation(s)
- Panjing Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Duoduo Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yumin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiqin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haoran Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Lyu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Ferris J, Zwier J, Carender WJ, Sienko KH. Differences between physical therapist ratings, self-ratings, and posturographic measures when assessing static balance exercise intensity. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1096171. [PMID: 37250428 PMCID: PMC10213890 DOI: 10.3389/fresc.2023.1096171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Introduction In order for balance therapy to be successful, the training must occur at the appropriate dosage. However, physical therapist (PT) visual evaluation, the current standard of care for intensity assessment, is not always effective during telerehabilitation. Alternative balance exercise intensity assessment methods have not previously been compared to expert PT evaluations. The aim of this study was therefore to assess the relationship between PT participant ratings of standing balance exercise intensity and balance participant self-ratings or quantitative posturographic measures. Methods Ten balance participants with age or vestibular disorder-related balance concerns completed a total of 450 standing balance exercises (three trials each of 150 exercises) while wearing an inertial measurement unit on their lower back. They provided per-trial and per-exercise self-ratings of balance intensity on a scale from 1 (steady) to 5 (loss of balance). Eight PT participants reviewed video recordings and provided a total of 1,935 per-trial and 645 per-exercise balance intensity expert ratings. Results PT ratings were of good inter-rater reliability and significantly correlated with exercise difficulty, supporting the use of this intensity scale. Per-trial and per-exercise PT ratings were significantly correlated with both self-ratings (r = 0.77-0.79) and kinematic data (r = 0.35-0.74). However, the self-ratings were significantly lower than the PT ratings (difference of 0.314-0.385). Resulting predictions from self-ratings or kinematic data agreed with PT ratings approximately 43.0-52.4% of the time, and agreement was highest for ratings of a 5. Discussion These preliminary findings suggested that self-ratings best indicated two intensity levels (i.e., higher/lower) and sway kinematics were most reliable at intensity extremes.
Collapse
Affiliation(s)
- Jamie Ferris
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Zwier
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Wendy J. Carender
- Michigan Balance Vestibular Testing and Rehabilitation, Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI, United States
| | - Kathleen H. Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Yakşi E, Yaşar MF, Türel CA, Balcı M. Are static posturography-assisted biofeedback exercises effective in Parkinson's disease? ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:935-943. [PMID: 36351419 PMCID: PMC9770088 DOI: 10.1055/s-0042-1755325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Parkinson disease (PD) is a progressive condition that causes disorders in movement and balance. OBJECTIVE To evaluate the effectiveness of static posturography-assisted biofeedback exercises in PD-related balance disorder. METHODS We screened 83 patients, 48 of whom were enrolled, and 41 completed the study. The sample was randomized into two groups, one submitted to static posturography-assisted biofeedback exercises and the other, to a conventional exercise program. The patients in the biofeedback group (n = 20) performed biofeedback exercises in addition to conventional balance exercises. Those in the conventional exercise group (n = 21) performed classic balance exercises. Both groups were treated for 20 minutes per session 3 times a week for 6 weeks. The patients were evaluated using the Hoehn and Yahr Scale, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), the Berg Balance Scale (BBS), the Tinetti Gait and Balance Assessment (TGBA), the Timed Up and Go Test (TUG), the Tandem Stance Test (TST), a Turkish version of the Stanford Health Assessment Questionnaire (HAQ), and the Beck Depression Inventory (BDI) before and at the end of the treatment. RESULTS No statistically significant differences were observed between the two groups in terms of the MDS-UPDRS, BBS, TGBA, TST, TUG, HAQ, or BDI measurements before and after the treatment (p > 0.05). CONCLUSIONS Improved balance parameters were observed following balance training in the patients with PD, although static posturography-assisted biofeedback exercises appeared to provide no additional benefit. However, larger, randomized controlled trials are needed to investigate their effectiveness.
Collapse
Affiliation(s)
- Elif Yakşi
- Abant Izzet Baysal University, Medical Faculty, Department of Physical Medicina and Rehabilitation, Bolu, Turkey.,Address for correspondence Elif Yakşi
| | - Mustafa Fatih Yaşar
- Abant Izzet Baysal University, Medical Faculty, Department of Physical Medicina and Rehabilitation, Bolu, Turkey.
| | - Canan Akünal Türel
- Abant Izzet Baysal University, Medical Faculty, Department of Neurology, Bolu, Turkey.
| | - Muhammed Balcı
- Abant Izzet Baysal University, Medical Faculty, Department of Physical Medicina and Rehabilitation, Bolu, Turkey.
| |
Collapse
|
4
|
Ferris J, Barone VJ, Perkins NC, Sienko KH. A Pilot Study Comparing the Effects of Concurrent and Terminal Visual Feedback on Standing Balance in Older Adults. SENSORS 2022; 22:s22082826. [PMID: 35458811 PMCID: PMC9033013 DOI: 10.3390/s22082826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
While balance training with concurrent feedback has been shown to improve real-time balance in older adults, terminal feedback may simplify implementation outside of clinical settings. Similarly, visual feedback is particularly well-suited for use outside the clinic as it is relatively easily understood and accessible via ubiquitous mobile devices (e.g., smartphones) with little additional peripheral equipment. However, differences in the effects of concurrent and terminal visual feedback are not yet well understood. We therefore performed a pilot study that directly compared the immediate effects of concurrent and terminal visual feedback as a first and necessary step in the future design of visual feedback technologies for balance training outside of clinical settings. Nineteen healthy older adults participated in a single balance training session during which they performed 38 trials of a single balance exercise including trials with concurrent, terminal or no visual feedback. Analysis of trunk angular position and velocity features recorded via an inertial measurement unit indicated that sway angles decreased with training regardless of feedback type, but sway velocity increased with concurrent feedback and decreased with terminal feedback. After removing feedback, training with either feedback type yielded decreased mean velocity, but only terminal feedback yielded decreased sway angles. Consequently, this study suggests that, for older adults, terminal visual feedback may be a viable alternative to concurrent visual feedback for short duration single-task balance training. Terminal feedback provided using ubiquitous devices should be further explored for balance training outside of clinical settings.
Collapse
|
5
|
Ballardini G, Florio V, Canessa A, Carlini G, Morasso P, Casadio M. Vibrotactile Feedback for Improving Standing Balance. Front Bioeng Biotechnol 2020; 8:94. [PMID: 32154229 PMCID: PMC7046798 DOI: 10.3389/fbioe.2020.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
Maintaining balance standing upright is an active process that complements the stabilizing properties of muscle stiffness with feedback control driven by independent sensory channels: proprioceptive, visual, and vestibular. Considering that the contribution of these channels is additive, we investigated to what extent providing an additional channel, based on vibrotactile stimulation, may improve balance control. This study focused only on healthy young participants for evaluating the effects of different encoding methods and the importance of the informational content. We built a device that provides a vibrotactile feedback using two vibration motors placed on the anterior and posterior part of the body, at the L5 level. The vibration was synchronized with an accelerometric measurement encoding a combination of the position and acceleration of the body center of mass in the anterior-posterior direction. The goal was to investigate the efficacy of the information encoded by this feedback in modifying postural patterns, comparing, in particular, two different encoding methods: vibration always on and vibration with a dead zone, i.e., silent in a region around the natural stance posture. We also studied if after the exposure, the participants modified their normal oscillation patterns, i.e., if there were after effects. Finally, we investigated if these effects depended on the informational content of the feedback, introducing trials with vibration unrelated to the actual postural oscillations (sham feedback). Twenty-four participants were asked to stand still with their eyes closed, alternating trials with and without vibrotactile feedback: nine were tested with vibration always on and sham feedback, fifteen with dead zone feedback. The results show that synchronized vibrotactile feedback reduces significantly the sway amplitude while increasing the frequency in anterior-posterior and medial-lateral directions. The two encoding methods had no different effects of reducing the amount of postural sway during exposure to vibration, however only the dead-zone feedback led to short-term after effects. The presence of sham vibration, instead, increased the sway amplitude, highlighting the importance of the encoded information.
Collapse
Affiliation(s)
- Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Valeria Florio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giorgio Carlini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Pietro Morasso
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
- Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genoa, Italy
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Bao T, Klatt BN, Carender WJ, Kinnaird C, Alsubaie S, Whitney SL, Sienko KH. Effects of long-term vestibular rehabilitation therapy with vibrotactile sensory augmentation for people with unilateral vestibular disorders – A randomized preliminary study. J Vestib Res 2020; 29:323-334. [PMID: 31609716 PMCID: PMC9249282 DOI: 10.3233/ves-190683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVE: This pilot study aimed to investigate the effects of incorporating vibrotactile sensory augmentation (SA) on balance performance among people with unilateral vestibular disorders (UVD). METHODS: Eight participants with UVD were recruited. Participants completed 18 balance training sessions across six weeks in a clinical setting. Four participants (68.1±7.5 yrs) were randomized to the experimental group (EG) and received trunk-based vibrotactile SA while performing the balance exercises, and four participants (63.1±11.3 yrs) were assigned to the control group (CG); CG participants completed the balance training without SA. Clinical and kinematic balance performance measures were collected before training; midway through training; and one week, one month, and six months after training. RESULTS: All participants, regardless of group, demonstrated improvements in a subset of the clinical or balance metrics immediately following completion of the balance training protocol. The EG showed significantly greater improvements than the CG for the Activities-specific Balance Confidence Scale and postural stability during the two standing balance exercises with head movements. The EG also had larger improvements than the CG for the Sensory Organization Test (SOT), Mini Balance Evaluations Systems Test, Gait Speed Test, Dynamic Gait Index, Functional Gait Assessment, and vestibular reliance metric calculated based on the SOT. CONCLUSIONS: Incorporating vibrotactile SA into vestibular rehabilitation programs may lead to additional benefits that may be retained up to six months after training compared to training without vibrotactile SA. A larger study is warranted to demonstrate statistical significance between the groups.
Collapse
Affiliation(s)
- Tian Bao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brooke N. Klatt
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wendy J. Carender
- Otolaryngology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Kinnaird
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Saud Alsubaie
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Therapy and Health Rehabilitation, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Susan L. Whitney
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Otolaryngology, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen H. Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Kuo LC, Yang CJ, Lin CF, Jou IM, Yang YC, Yeh CH, Lin CC, Hsu HY. Effects of a task-based biofeedback training program on improving sensorimotor function in neuropathic hands in diabetic patients: a randomized controlled trial. Eur J Phys Rehabil Med 2019; 55:618-626. [DOI: 10.23736/s1973-9087.19.05667-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Sienko KH, Whitney SL, Carender WJ, Wall C. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device? J Vestib Res 2018; 27:63-76. [PMID: 28387692 DOI: 10.3233/ves-170606] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This narrative review highlights findings from the sensory augmentation field for people with vestibular deficits and addresses the outstanding questions that are critical to the translation of this technology into clinical and/or personal use. Prior research has demonstrated that the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies can improve balance during static and dynamic stance tasks within a laboratory setting. However, its application in improving gait requires additional investigation, as does its efficacy as a rehabilitation device for people with vestibular deficits. In some locomotor studies involving sensory augmentation, gait velocity decreased and secondary task performance worsened, and subjects negatively altered their segmental control strategies when cues were provided following short training sessions. A further question is whether the retention and/or carry-over effects of training with a sensory augmentation technology exceed the retention and/or carry-over effects of training alone, thereby supporting its use as a rehabilitation device. Preliminary results suggest that there are short-term improvements in balance performance following a small number of training sessions with a sensory augmentation device. Long-term clinical and home-based controlled training studies are needed. It is hypothesized that sensory augmentation provides people with vestibular deficits with additional sensory input to promote central compensation during a specific exercise/activity; however, research is needed to substantiate this theory. Major obstacles standing in the way of its use for these critical applications include determining exercise/activity specific feedback parameters and dosage strategies. This paper summarizes the reported findings that support sensory augmentation as a balance aid and rehabilitation device, but does not critically examine efficacy or the quality of the research methods used in the reviewed studies.
Collapse
Affiliation(s)
- K H Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - S L Whitney
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA.,Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - W J Carender
- Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI, USA
| | - C Wall
- Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Pizzolato C, Reggiani M, Modenese L, Lloyd DG. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim. Comput Methods Biomech Biomed Engin 2016; 20:436-445. [PMID: 27723992 DOI: 10.1080/10255842.2016.1240789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Collapse
Affiliation(s)
- C Pizzolato
- a School of Allied Health Sciences and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - M Reggiani
- b Department of Management and Engineering , University of Padua , Vicenza , Italy
| | - L Modenese
- a School of Allied Health Sciences and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia.,c Department of Mechanical Engineering , University of Sheffield , Sheffield , UK.,d INSIGNEO Institute for in silico Medicine , University of Sheffield , Sheffield , UK
| | - D G Lloyd
- a School of Allied Health Sciences and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
10
|
van der Logt R, Findling O, Rust H, Yaldizli O, Allum J. The effect of vibrotactile biofeedback of trunk sway on balance control in multiple sclerosis. Mult Scler Relat Disord 2016; 8:58-63. [DOI: 10.1016/j.msard.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/09/2016] [Accepted: 05/01/2016] [Indexed: 11/25/2022]
|
11
|
Walker ER, Hyngstrom AS, Schmit BD. Influence of visual feedback on dynamic balance control in chronic stroke survivors. J Biomech 2016; 49:698-703. [DOI: 10.1016/j.jbiomech.2016.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Eric R Walker
- Department of Biomedical Engineering, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
12
|
Deshpande N, Zhang F. Trunk, Head, and Step Characteristics During Normal and Narrow-Based Walking Under Deteriorated Sensory Conditions. J Mot Behav 2014; 46:125-32. [DOI: 10.1080/00222895.2013.877416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Dehzangi O, Zhao Z, Bidmeshki MM, Biggan J, Ray C, Jafari R. The Impact of Vibrotactile Biofeedback on the Excessive Walking Sway and the Postural Control in Elderly. PROCEEDINGS WIRELESS HEALTH ... [ELECTRONIC RESOURCE]. WIRELESS HEALTH (CONFERENCE) 2013; 2013. [PMID: 28224139 DOI: 10.1145/2534088.2534110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gait and postural control are important aspects of human movement and balance. Normal movement control in human is subject to change with aging. With aging, the nervous system comprising, somatosensory, visual senses, spatial orientation senses, and neuromuscular control degrade. As a result, the body movement control such as the lateral sway while walking is affected which has been shown to be a significant cause of falling among the elderly. Biofeedback has been investigated to assist elderly improve their body movement and postural ability, by supplementing the feedback to the nervous system. In this paper, we propose a wearable low-power sensor system capable of characterizing lateral sway and gait parameters. Then, it can provide corrective feedback to reduce excessive sway in real-time via vibratory feedback modules. Real-time and low-power characteristics along with wearability of our proposed system allow long-term continuous subjects' sway monitoring while giving direct feedback to enhance walking sway and prevent falling. It can also be used in the clinics as a tool for evaluating the risks of falls, and training users to better maintain their balance. The effectiveness of the biofeedback system was evaluated on 12 older adults as they performed gait and stance tasks with and without biofeedback. Significant improvement (p-value < 0.1) in sway angle in variance of the sway angle, variance of gait phases, and in postural control while on perturbed surface was detected when the proposed Sway Error Feedback System was used.
Collapse
Affiliation(s)
- Omid Dehzangi
- Electrical Engineering Department, University of Texas at Dallas 800 W Campbell Rd, Richardson, TX 75080
| | - Zheng Zhao
- Electrical Engineering Department, University of Texas at Dallas 800 W Campbell Rd, Richardson, TX 75080
| | - Mohammad-Mahdi Bidmeshki
- Electrical Engineering Department, University of Texas at Dallas 800 W Campbell Rd, Richardson, TX 75080
| | - John Biggan
- Center for Healthy Living and Longevity, University of Texas at Arlington 500 W Nedderman Drive, Arlington, TX 76019
| | - Christopher Ray
- Center for Healthy Living and Longevity, University of Texas at Arlington 500 W Nedderman Drive, Arlington, TX 76019
| | - Roozbeh Jafari
- Electrical Engineering Department, University of Texas at Dallas 800 W Campbell Rd, Richardson, TX 75080
| |
Collapse
|
14
|
Ghulyan-Bedikian V, Paolino M, Paolino F. Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: influence of vestibular loss and old-age. Gait Posture 2013; 38:777-83. [PMID: 23623605 DOI: 10.1016/j.gaitpost.2013.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 02/15/2013] [Accepted: 03/23/2013] [Indexed: 02/02/2023]
Abstract
Our objective was to evaluate whether the severity of vestibular loss and old-age (>65) affect a patient's ability to benefit from training using head-position based, tongue-placed electrotactile feedback. Seventy-one chronic dizzy patients, who had reached a plateau with their conventional rehabilitation, followed six 1-h training sessions during 4 consecutive days (once on days 1 and 4, twice on days 2 and 3). They presented bilateral vestibular areflexia (BVA), bilateral vestibular losses (BVL), unilateral vestibular areflexia or unilateral vestibular losses and were divided into two age-subgroups (≤65 and >65). Posturographic assessments were performed without the device, 4h before and after the training. Patients were tested with eyes opened and eyes closed (EC) on static and dynamic (passively tilting) platforms. The studied posturographic scores improved significantly, especially under test conditions restricting either visual or somatosensory input. This 4-h retention effect was greater in older compared to younger patients and was proportional to the degree of vestibular loss, patients with increased vestibular losses showing greater improvements. In bilateral patients, who constantly fell under dynamic-EC condition at the baseline, the therapy effect was expressed by disappearance of falls in BVL and significant prolongation in time-to-fall in BVA subgroups. Globally, our data showed that short training with head-position based, tongue-placed electrotactile biofeedback improves balance in chronic vestibulopathic patients some 16.74% beyond that achieved with standard balance physiotherapy. Further studies with longer use of this biofeedback are needed to investigate whether this approach could have long-lasting retention effect on balance and quality of life.
Collapse
Affiliation(s)
- Vénéra Ghulyan-Bedikian
- Hôpital Privé Clairval, Explorations Oto-Neurologiques et Réhabilitation des Troubles de l'Equilibre, Marseille, France.
| | | | | |
Collapse
|
15
|
Mechanisms of postural instability in hereditary spastic paraplegia. J Neurol 2013; 260:2387-95. [PMID: 23784609 DOI: 10.1007/s00415-013-7002-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Hereditary spastic paraplegia (HSP) is characterized by progressive lower extremity spasticity and weakness, due to retrograde axonal degeneration of the corticospinal tract and posterior spinal columns. HSP patients fall frequently. We hypothesized that delayed postural responses contribute to their balance impairments. To distinguish between a delay in afferent and efferent signals, we combined postural responses with a startling acoustic stimulus (SAS). The SAS triggers a postural response directly, bypassing afferent proprioceptive input. We performed two experiments. First, 18 HSP patients and nine healthy controls stood on a balance platform and were instructed to counteract forward and backward balance perturbations, without taking a step or grabbing a handrail. Second, 12 HSP patients and nine controls received backward perturbations, while a SAS accompanied onset of platform motion in 25% of trials. HSP patients were less successful than controls in maintaining balance following backward and forward perturbations. Furthermore, latencies of postural responses were significantly delayed in HSP-patients, by 34 ms in gastrocnemius following forward, and by 38 ms in tibialis anterior following backward perturbations. A SAS accelerated postural responses in all participants, but more so in HSP patients whose latencies were normalized. Our results suggest that delayed postural responses in HSP patients contribute to their balance problems. Combining balance perturbations with a SAS restored normal latencies, suggesting that conduction of efferent signals (presumably by the reticulospinal tract) is normal. We therefore suggest that the delayed postural responses in HSP are caused by slowed conduction time via the posterior spinal columns.
Collapse
|
16
|
GOPALAI ALPHAAGAPE, SENANAYAKE SMNAROSHA. ASSISTIVE VIBROTACTILE BIOFEEDBACK SYSTEM FOR POSTURAL CONTROL ON PERTURBED SURFACE. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Postural control is an important aspect of human locomotion and stance. When inputs to the Central Nervous System (CNS), consisting of the vestibular, somatosensory, and visual senses, degrade or become dysfunctional, the postural control is affected. Biofeedback has been established as a potential intervention method to assist individuals improve postural control, by augmenting or complementing signals to the CNS. This paper presents an approach to help achieve better postural control using vibrotactile biofeedback. Tests to monitor postural control, in eyes open and eyes closed states, on a wobble board were introduced to assess the viability of the designed system in providing accurate real-time biofeedback responses. Postural control was gauged by measuring the angular displacement of perturbations experienced. Perturbations along the anterior and posterior direction are used to determine the level of provided vibrotactile biofeedback. The feedback informs subjects the severity of perturbation and direction of imbalance. Significant improvement (p-value < 0.05) in postural control while on perturbed surface was detected when the designed biofeedback system was used. The wearable system was found to be effective in improving postural control of the subjects and can be expanded for rehabilitation, conditioning, and strengthening applications dealing with human postural control.
Collapse
Affiliation(s)
- ALPHA AGAPE GOPALAI
- School of Engineering & Science, Curtin University, Sarawak Campus CDT 250, 98009 Miri, Sarawak, Malaysia
| | | |
Collapse
|
17
|
Directional postural responses induced by vibrotactile stimulations applied to the torso. Exp Brain Res 2012; 222:471-82. [PMID: 22968737 DOI: 10.1007/s00221-012-3233-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
Abstract
It has been shown that torso-based vibrotactile feedback significantly reduces postural sway in balance-compromised adults during quiet standing and in response to perturbations. This study aimed to determine whether vibrotactile stimulations applied to different torso locations induced directional postural responses and whether torso cutaneous information contributes to body representation. Eleven healthy young adults equipped with an inertial measurement unit (IMU) placed on the torso were asked to maintain an upright posture with closed eyes. Six vibrators (tactors) were placed on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscles at the L4/L5 level. Each tactor was randomly activated four times per location at a frequency of 250 Hz for a period of 5 s. The IMU results indicated that vibration applied individually over the internal oblique and erector spinae muscles induced a postural shift of about one degree oriented in the direction of the stimulation, while simultaneous activation of all tactors and activation of tactors over external oblique muscles produced insignificant postural effects. The root mean square of the sway signal was significantly higher during vibration than before or after. However, the center of pressure displacement, measured by a force plate, was uninfluenced by any vibration. These results suggest a multi-joint postural response including a torso inclination associated with vibration-induced changes in cutaneous information. The directional aspect of vibration-induced postural shifts suggests that cutaneous information from the stimulated areas contributes to proprioception and upper body spatial representation.
Collapse
|
18
|
Nanhoe-Mahabier W, Allum JH, Pasman EP, Overeem S, Bloem BR. The effects of vibrotactile biofeedback training on trunk sway in Parkinson's disease patients. Parkinsonism Relat Disord 2012; 18:1017-21. [PMID: 22721975 DOI: 10.1016/j.parkreldis.2012.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/14/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Postural instability in Parkinson's disease (PD) can lead to falls, injuries and reduced quality of life. We investigated whether balance in PD can improve by offering patients feedback about their own trunk sway as a supplement to natural sensory inputs. Specifically, we investigated the effect of artificial vibrotactile biofeedback on trunk sway in PD. METHODS Twenty PD patients were assigned to a control group (n = 10) or biofeedback group (n = 10). First, all patients performed two sets of six gait tasks and six stance tasks (pre-training assessment). Subsequently, all subjects trained six selected tasks five times (balance training). During this training, the feedback group received vibrotactile feedback of trunk sway, via vibrations delivered at the head. After training, both groups repeated all twelve tasks (post-training assessment). During all tasks, trunk pitch and roll movements were measured with angular velocity sensors attached to the lower trunk. Outcomes included sway angle and sway angular velocity in the roll and pitch plane, and task duration. RESULTS Overall, patients in the feedback group had a significantly greater reduction in roll (P = 0.005) and pitch (P < 0.001) sway angular velocity. Moreover, roll sway angle increased more in controls after training, suggesting better training effects in the feedback group (P < 0.001). CONCLUSIONS One session of balance training in PD using a biofeedback system showed beneficial effects on trunk stability. Additional research should examine if these effects increase further after more intensive training, how long these persist after training has stopped, and if the observed effects carry over to non-trained tasks.
Collapse
Affiliation(s)
- W Nanhoe-Mahabier
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Keshner EA, Slaboda JC, Buddharaju R, Lanaria L, Norman J. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1379-82. [PMID: 22254574 DOI: 10.1109/iembs.2011.6090324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present results from a series of studies that investigated how multimodal mismatches in a virtual environment modified postural response organization. Adaptation of motor commands to functional circumstances is driven directly by error signals. Thus, motor relearning should increase when performing in environments containing sensory mismatch. We hypothesized that kinematics of the response would be linked to specific characteristics of the sensory array. Sensory weighting was varied by: 1) rotating the visual field about the talo-crural joint or the interaural axis, 2) adding stochastic vibrations at the sole of the foot, and 3) combining galvanic vestibular stimulation with rotations of the visual field. Results indicated that postural responses are shaped by the location of a sensory disturbance and also by the processing demands of the environmental array. Sensory-motor demands need to be structured when developing therapeutic interventions for patients with balance disorders.
Collapse
Affiliation(s)
- Emily A Keshner
- Dept of Physical Therapy, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | |
Collapse
|
20
|
Allum JHJ, Carpenter MG, Horslen BC, Davis JR, Honegger F, Tang KS, Kessler P. Improving impaired balance function: real-time versus carry-over effects of prosthetic feedback. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1314-8. [PMID: 22254558 DOI: 10.1109/iembs.2011.6090309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study investigated whether training with realtime prosthetic biofeedback (BF) of trunk sway induces a carry-over improvement in balance control once BF is removed. 12 healthy older adults and 7 uncompensated unilateral vestibular loss patients were tested. All participants performed a battery of 14 balance and gait tasks (pre-test) upon their initial lab visit during which trunk angular sway was measured at L1-3. They then received balance BF training on a subset of 7 tasks, three times per week, for two consecutive weeks. BF was provided using a multi-modal biofeedback system with graded vibrotactile, auditory, and visual cues in relation to subject-specific angular displacement thresholds. Performance on the battery of the 14 balance and gait tasks (without BF) was re-assessed immediately after the 2 week training period, as well as 1 week later to examine BF carry-over effects. Significant reductions in trunk angular displacement were observed with the real-time BF, compared to the pre-test trials. The effects of BF persisted when BF was removed immediately after the final training session. BF carry-over effects were less evident at one week post-training. This evidence supports the potential short-term effects of BF training in a limited number of tasks after the BF is removed in healthy elderly subjects and those with vestibular loss. However, the prospect for longer term (>1 week) effects of prosthetic training on balance control remains currently unknown.
Collapse
|