1
|
Niu K, Sluiter V, Lan B, Homminga J, Sprengers A, Verdonschot N. A Method to Track 3D Knee Kinematics by Multi-Channel 3D-Tracked A-Mode Ultrasound. SENSORS (BASEL, SWITZERLAND) 2024; 24:2439. [PMID: 38676056 PMCID: PMC11053743 DOI: 10.3390/s24082439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e., optical tracking system). This approach allows for the non-invasive and non-radiative quantification of the tibiofemoral joint's six degrees of freedom (DOF). We demonstrated the feasibility and accuracy of this method in the cadaveric experiment. The knee joint's motions were mimicked by manually manipulating the leg through multiple motion cycles from flexion to extension. To measure it, six custom ultrasound holders, equipped with a total of 30 A-mode ultrasound transducers and 18 optical markers, were mounted on various anatomical regions of the lower extremity of the specimen. During experiments, 3D-tracked intra-cortical bone pins were inserted into the femur and tibia to measure the ground truth of tibiofemoral kinematics. The results were compared with the tibiofemoral kinematics derived from the proposed ultrasound system. The results showed an average rotational error of 1.51 ± 1.13° and a translational error of 3.14 ± 1.72 mm for the ultrasound-derived kinematics, compared to the ground truth. In conclusion, this multi-channel A-mode ultrasound system demonstrated a great potential of effectively measuring tibiofemoral kinematics during dynamic motions. Its improved accuracy, nature of non-invasiveness, and lack of radiation exposure make this method a promising alternative to incorporate into gait analysis and prosthetic kinematic measurements later.
Collapse
Affiliation(s)
- Kenan Niu
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | - Victor Sluiter
- Department of Biomechanical Engineering, University of Twente, 7521 HK Enschede, The Netherlands (J.H.)
| | - Bangyu Lan
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | - Jasper Homminga
- Department of Biomechanical Engineering, University of Twente, 7521 HK Enschede, The Netherlands (J.H.)
| | - André Sprengers
- Orthopaedic Research Lab, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, University of Twente, 7521 HK Enschede, The Netherlands (J.H.)
- Orthopaedic Research Lab, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
2
|
Wolf P, Moor R, Lundberg A, Nester C, Arndt A, Graf E. Human ankle joint movements during walking are probably not determined by talar morphology. Sci Rep 2022; 12:13856. [PMID: 35974121 PMCID: PMC9381502 DOI: 10.1038/s41598-022-17984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Knowledge about the orientation of a representative ankle joint axis is limited to studies of tarsal morphology and of quasistatic movements. The aim of our study was therefore to determine the development of the axis orientation during walking. Intracortical bone pins were used to monitor the kinematics of the talus and tibia of five healthy volunteers. The finite helical axis was determined for moving windows of 10% stance phase and its orientation reported if the rotation about the axis was more than 2°. A representative axis for ankle dorsi- and plantarflexion was also estimated based on tarsal morphology. As reported by literature, the morphology-based axis was inclined more medially upwards for dorsiflexion than for plantarflexion. However, when a mean of the finite helical axis orientations was calculated for each walking trial for dorsiflexion (stance phase 15–25%) and for plantarflexion (stance phase 85–95%), the inclination was less medially upwards in dorsiflexion than in plantarflexion in four out of five participants. Thus, it appears that the inclination of a representative ankle joint axis for dynamic loading situations cannot be estimated from either morphology or quasi-static experiments. Future studies assessing muscle activity, ligament behaviour and articulating surfaces may help to identify the determining factors for the orientation of a representative ankle joint axis.
Collapse
Affiliation(s)
- Peter Wolf
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| | - Roman Moor
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Arne Lundberg
- Department of Clinical Science, Intervention and Technology (Clintec), Karolinska Institute, Stockholm, Sweden
| | | | - Anton Arndt
- Department of Clinical Science, Intervention and Technology (Clintec), Karolinska Institute, Stockholm, Sweden.,The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Eveline Graf
- Institute of Physiotherapy, School of Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
3
|
Veirs KP, Fagg AH, Haleem AM, Jeffries LM, Randall K, Sisson SB, Dionne CP. Applications of Biomechanical Foot Models to Evaluate Dance Movements Using Three-Dimensional Motion Capture: A Review of the Literature. J Dance Med Sci 2022; 26:69-86. [PMID: 35287789 DOI: 10.12678/1089-313x.061522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dance movement requires excessive, repetitive range of motion (ROM) at the foot-ankle complex, possibly contributing to the high rate of injury among dancers. However, we know little about foot biomechanics during dance movements. Researchers are using three-dimensional (3D) motion capture systems to study the in vivo kinematics of joint segments more frequently in dance-medicine research, warranting a literature review and quality assessment evaluation. The purpose of this literature review was to identify and evaluate studies that used 3D motion capture to analyze in vivo biomechanics of the foot and ankle for a cohort of dancers during dance-specific movement. Three databases (PubMed, Ovid MEDLINE, CINAHL) were accessed along with hand searches of dance-specific journals to identify relevant articles through March 2020. Using specific selection criteria, 25 studies were identified. Fifteen studies used single-segment biomechanical foot models originally created to study gait, four used a novel two-segment model, and six utilized a multi-seg- ment foot model. Nine of the studies referenced common and frequently published gait marker sets and four used a dance-specific biomechanical model with purposefully designed foot segments to analyze the dancers' foot and ankle. Description of the biomechanical models varied, reducing the reproducibility of the models and protocols. Investigators concluded that there is little evidence that the extreme total, segmental, and inter-segmental foot and ankle ROM exerted by dancers are being evaluated during dance-specific movements using 3D motion capture. Findings suggest that 3D motion capture is a robust measurement tool that has the capability to assist researchers in evaluating the in vivo, inter-segmental motion of the foot and ankle to potentially discover many of the remaining significant factors predisposing dancers to injury. The literature review synthesis is presented with recommendations for consideration when evaluating results from studies that utilized a 3D biomechanical foot model to evaluate dance-specific movement.
Collapse
Affiliation(s)
- Kimberly P Veirs
- Oklahoma City University, Oklahoma City, Oklahoma, USA; kpveirs@okcu. edu
| | | | - Amgad M Haleem
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA, and Cairo University College of Medicine, Cairo, Egypt
| | - Lynn M Jeffries
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ken Randall
- University of Oklahoma Health Sciences Center, Tulsa, Oklahoma, USA
| | - Susan B Sisson
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Carol P Dionne
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
D’Amico M, Kinel E, D’Amico G, Roncoletta P. A Self-Contained 3D Biomechanical Analysis Lab for Complete Automatic Spine and Full Skeleton Assessment of Posture, Gait and Run. SENSORS 2021; 21:s21113930. [PMID: 34200358 PMCID: PMC8201118 DOI: 10.3390/s21113930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
Quantitative functional assessment of Posture and Motion Analysis of the entire skeleton and spine is highly desirable. Nonetheless, in most studies focused on posture and movement biomechanics, the spine is only grossly depicted because of its required level of complexity. Approaches integrating pressure measurement devices with stereophotogrammetric systems have been presented in the literature, but spine biomechanics studies have rarely been linked to baropodometry. A new multi-sensor system called GOALS-E.G.G. (Global Opto-electronic Approach for Locomotion and Spine-Expert Gait Guru), integrating a fully genlock-synched baropodometric treadmill with a stereophotogrammetric device, is introduced to overcome the above-described limitations. The GOALS-EGG extends the features of a complete 3D parametric biomechanical skeleton model, developed in an original way for static 3D posture analysis, to kinematic and kinetic analysis of movement, gait and run. By integrating baropodometric data, the model allows the estimation of lower limb net-joint forces, torques and muscle power. Net forces and torques are also assessed at intervertebral levels. All the elaborations are completely automatised up to the mean behaviour extraction for both posture and cyclic-repetitive tasks, allowing the clinician/researcher to perform, per each patient, multiple postural/movement tests and compare them in a unified statistically reliable framework.
Collapse
Affiliation(s)
- Moreno D’Amico
- SMART Lab (Skeleton Movement Analysis and Advanced Rehabilitation Technologies)—Bioengineering & Biomedicine Company, 65126 Pescara, Italy; (G.D.); (P.R.)
- Department of Neuroscience, Imaging and Clinical Sciences University G. D’Annunzio, 66100 Chieti, Italy
- Correspondence:
| | - Edyta Kinel
- Department of Rehabilitation, University of Medical Sciences, 61-545 Poznan, Poland;
| | - Gabriele D’Amico
- SMART Lab (Skeleton Movement Analysis and Advanced Rehabilitation Technologies)—Bioengineering & Biomedicine Company, 65126 Pescara, Italy; (G.D.); (P.R.)
| | - Piero Roncoletta
- SMART Lab (Skeleton Movement Analysis and Advanced Rehabilitation Technologies)—Bioengineering & Biomedicine Company, 65126 Pescara, Italy; (G.D.); (P.R.)
| |
Collapse
|
5
|
Schallig W, Streekstra GJ, Hulshof CM, Kleipool RP, Dobbe JGG, Maas M, Harlaar J, van der Krogt MM, van den Noort JC. The influence of soft tissue artifacts on multi-segment foot kinematics. J Biomech 2021; 120:110359. [PMID: 33730563 DOI: 10.1016/j.jbiomech.2021.110359] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
Movement of skin markers with respect to their underlying bone (i.e. soft tissue artifacts (STAs)) might corrupt the accuracy of marker-based movement analyses. This study aims to quantify STAs in 3D for foot markers and their effect on multi-segment foot kinematics as calculated by the Oxford and Rizzoli Foot Models (OFM, RFM). Fifteen subjects with asymptomatic feet were seated on a custom-made loading device on a computed tomography (CT) table, with a combined OFM and RFM marker set on their right foot. One unloaded reference CT-scan with neutral foot position was performed, followed by 9 loaded CT-scans at different foot positions. The 3D-displacement (i.e. STA) of each marker in the underlying bone coordinate system between the reference scan and other scans was calculated. Subsequently, segment orientations and joint angles were calculated from the marker positions according to OFM and RFM definitions with and without STAs. The differences in degrees were defined as the errors caused by the marker displacements. Markers on the lateral malleolus and proximally on the posterior aspect of the calcaneus showed the largest STAs. The hindfoot-shank joint angle was most affected by STAs in the most extreme foot position (40° plantar flexion) in the sagittal plane for RFM (mean: 6.7°, max: 11.8°) and the transverse plane for OFM (mean: 3.9°, max: 6.8°). This study showed that STAs introduce clinically relevant errors in multi-segment foot kinematics. Moreover, it identified marker locations that are most affected by STAs, suggesting that their use within multi-segment foot models should be reconsidered.
Collapse
Affiliation(s)
- Wouter Schallig
- Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Medical Imaging Quantification Center (MIQC), Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Geert J Streekstra
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Medical Imaging Quantification Center (MIQC), Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Chantal M Hulshof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Roeland P Kleipool
- Amsterdam UMC, University of Amsterdam, Medical Biology, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes G G Dobbe
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mario Maas
- Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Medical Imaging Quantification Center (MIQC), Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jaap Harlaar
- Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Marjolein M van der Krogt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Josien C van den Noort
- Amsterdam UMC, Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Radiology and Nuclear Medicine, Medical Imaging Quantification Center (MIQC), Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Hajizadeh M, Michaud B, Begon M. The effect of intracortical bone pin on shoulder kinematics during dynamic activities. Int Biomech 2019; 6:47-53. [PMID: 34042000 PMCID: PMC7857305 DOI: 10.1080/23335432.2019.1633958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/06/2019] [Indexed: 11/07/2022] Open
Abstract
Intracortical bone pins are introduced as gold standard for analysing skeletal motion because of eliminating soft tissue artefact. However, excluding this methodological error might be in cost of intervening movement pattern by local anaesthesia and pain of external tool within body. The purpose of this study was to examine whether intracortical bone pins alter shoulder joint kinematics or coordination. Three subjects were analysed during arm elevation/depression in frontal and sagittal planes. Retroreflective skin markers captured the motion in two sessions, before and after inserting bone pins (SKIN and PIN sessions), respectively. Thoracohumeral and scapulothoracic kinematics and scapulohumeral rhythm (SHR) were compared between two sessions. Thoracohumeral exhibited lower elevation and internal rotation in PIN session especially close to maximum arm elevation. The highest differences were observed for scapulothoracic kinematics, with higher retraction during abduction as well as higher posterior tilt, lateral rotation and retraction during flexion in PIN session. In addition, no systematic changes in SHR between subjects was found. Statistically significant lower SHR in PIN session was observed over 87-100% of thoracohumeral elevation/depression cycle in frontal plane and over 25-61% in sagittal plane. Further studies should treat carefully toward the clinical validity of shoulder joint kinematics after inserting bone pins.
Collapse
Affiliation(s)
- Maryam Hajizadeh
- Laboratoire de Simulation et Modélisation du Mouvement, Faculté de médecine, Université de Montréal, Laval, QC, Canada
| | - Benjamin Michaud
- Laboratoire de Simulation et Modélisation du Mouvement, Faculté de médecine, Université de Montréal, Laval, QC, Canada
| | - Mickael Begon
- Laboratoire de Simulation et Modélisation du Mouvement, Faculté de médecine, Université de Montréal, Laval, QC, Canada
| |
Collapse
|
7
|
Fischer KM, Willwacher S, Arndt A, Wolf P, Brueggemann GP. Calcaneal adduction in slow running: three case studies using intracortical pins. FOOTWEAR SCIENCE 2017. [DOI: 10.1080/19424280.2017.1342704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Katina Mira Fischer
- German Sport University Cologne, Institute of Biomechanics and Orthopaedics, Cologne, Germany
| | - Steffen Willwacher
- German Sport University Cologne, Institute of Biomechanics and Orthopaedics, Cologne, Germany
| | - Anton Arndt
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Peter Wolf
- ETH Zurich, Sensory-Motor Systems Laboratory, Zürich, Switzerland
| | - Gert-Peter Brueggemann
- German Sport University Cologne, Institute of Biomechanics and Orthopaedics, Cologne, Germany
| |
Collapse
|