1
|
Anderson DD, Wilken J, Ledoux W, Lenz AL, Easley ME, de Cesar Netto C. Ankle osteoarthritis: Toward new understanding and opportunities for prevention and intervention. J Orthop Res 2024. [PMID: 39269016 DOI: 10.1002/jor.25973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024]
Abstract
The ankle infrequently develops primary osteoarthritis (OA), especially when compared to the hip and the knee. Ankle OA instead generally develops only after trauma. The consequences of end-stage ankle OA can nonetheless be extremely debilitating, with impairment comparable to that of end-stage kidney disease or congestive heart failure. Disconcertingly, evidence suggests that ankle OA can develop more often than is generally appreciated after even low-energy rotational ankle fractures and chronic instability associated with recurrent ankle sprains, albeit at a slower rate than after more severe trauma. The mechanisms whereby ankle OA develops after trauma are poorly understood, but mechanical factors are implicated. A better understanding of the prevalence and mechanical etiology of post-traumatic ankle OA can lead to better prevention and mitigation. New surgical and conservative interventions, including improved ligamentous repair strategies and custom carbon fiber bracing, hold promise for advancing treatment that may prevent residual ankle instability and the development of ankle OA. Studies are needed to fill in key knowledge gaps here related to etiology so that the interventions can target key factors. New technologies, including weight bearing CT and biplane fluoroscopy, offer fresh opportunities to better understand the relationships between trauma, ankle alignment, residual ankle instability, OA development, and foot/ankle function. This paper begins by reviewing the epidemiology of post-traumatic ankle OA, presents evidence suggesting that new treatment options might be successful at preventing ankle OA, and then highlights recent technical advances in understanding of the origins of ankle OA to identify directions for future research.
Collapse
Affiliation(s)
- Donald D Anderson
- Department of Orthopedics & Rehabilitation, The University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa, USA
- Department of Industrial and Systems Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Jason Wilken
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, Iowa, USA
| | - William Ledoux
- Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Washington, USA
- Departments of Mechanical Engineering and Orthopaedics & Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Mark E Easley
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Cesar de Cesar Netto
- Department of Orthopedics & Rehabilitation, The University of Iowa, Iowa City, Iowa, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Sharma S, Anderson KM, Pacha MS, Falbo KJ, Severe C, Hansen AH, Hendershot BD, Wilken JM. The effect of carbon fiber custom dynamic orthosis use and design on center of pressure progression and perceived smoothness in individuals with lower limb trauma. Clin Biomech (Bristol, Avon) 2024; 117:106284. [PMID: 38870878 DOI: 10.1016/j.clinbiomech.2024.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Carbon-fiber custom dynamic orthoses are used to improve gait and limb function following lower limb trauma in specialty centers. However, the effects of commercially available orthoses on center of pressure progression and patient perception of orthosis smoothness during walking are poorly understood. METHODS In total, 16 participants with a unilateral lower extremity traumatic injury underwent gait analysis when walking without an orthosis, and while wearing monolithic and modular devices, in a randomized order. Device alignment, stiffness, participant rating of perceived device smoothness, center of pressure velocity, and ankle zero moment crossing were assessed. FINDINGS The modular device was approximately twice as stiff as the monolithic device. Alignment, smoothness ratings, peak magnitude of center of pressure velocity, and zero moment crossing were not different between study devices. The time to peak center of pressure velocity occurred significantly later for the modular device compared to the monolithic and no orthosis conditions, with large effect sizes observed. INTERPRETATION Commercially available orthoses commonly used to treat limb trauma affect the timing of center of pressure progression relative to walking without an orthosis. Despite multiple design differences, monolithic and modular orthoses included in this study did not differ with respect to other measures of center of pressure progression. Perceived smoothness ratings were approximately 40% greater with the study orthoses as compared to previous studies in specialty centers, which may be due to a more gradual center of pressure progression, as indicted by lower peak magnitude of center of pressure velocity with both study orthoses.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - Kirsten M Anderson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Molly S Pacha
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kierra J Falbo
- Rehabilitation and Engineering Center for Optimizing Veteran Engagement and Reintegration (RECOVER), Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Clare Severe
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Andrew H Hansen
- Rehabilitation and Engineering Center for Optimizing Veteran Engagement and Reintegration (RECOVER), Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA; Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Brad D Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA
| | - Jason M Wilken
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Shuman BR, Hendershot BD, Morgenroth DC, Russell Esposito E. A patient-centered 'test-drive' strategy for ankle-foot orthosis prescription: Protocol for a randomized participant-blinded trial. PLoS One 2024; 19:e0302389. [PMID: 38696428 PMCID: PMC11065291 DOI: 10.1371/journal.pone.0302389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/31/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Ankle-foot orthoses (AFOs) are commonly used to overcome mobility limitations related to lower limb musculoskeletal injury. Despite a multitude of AFOs to choose from, there is scant evidence to guide AFO prescription and limited opportunities for AFO users to provide experiential input during the process. To address these limitations in the current prescription process, this study evaluates a novel, user-centered and personalized 'test-drive' strategy using a robotic exoskeleton ('AFO emulator') to emulate commercial AFO mechanical properties (i.e., stiffness). The study will determine if brief, in-lab trials (with emulated or actual AFOs) can predict longer term preference, satisfaction, and mobility outcomes after community trials (with the actual AFOs). Secondarily, it will compare the in-lab experience of walking between actual vs. emulated AFOs. METHODS AND ANALYSIS In this participant-blinded, randomized crossover study we will recruit up to fifty-eight individuals with lower limb musculoskeletal injuries who currently use an AFO. Participants will walk on a treadmill with three actual AFOs and corresponding emulated AFOs for the "in-lab" assessments. For the community trial assessment, participants will wear each of the actual AFOs for a two-week period during activities of daily living. Performance-based and user-reported measures of preference and mobility will be compared between short- and long-term trials (i.e., in-lab vs. two-week community trials), and between in-lab trials (emulated vs. actual AFOs). TRIAL REGISTRATION The study was prospectively registered at www.clininicaltrials.gov (Clinical Trials Study ID: NCT06113159). Date: November 1st 2023. https://classic.clinicaltrials.gov/ct2/show/NCT06113159.
Collapse
Affiliation(s)
- Benjamin R. Shuman
- VA RR&D Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Seattle Institute for Biomedical and Clinical Research, Seattle, Washington, United States of America
| | - Brad D. Hendershot
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, United States of America
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - David C. Morgenroth
- VA RR&D Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Russell Esposito
- VA RR&D Center for Limb Loss and Mobility, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, Virginia, United States of America
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Grunst MM, Wiederien RC, Wilken JM. Carbon fiber ankle-foot orthoses in impaired populations: A systematic review. Prosthet Orthot Int 2023; 47:457-465. [PMID: 36779973 DOI: 10.1097/pxr.0000000000000217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/14/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Carbon fiber is increasingly being used in ankle-foot orthoses (AFOs). Orthotic devices and carbon fiber-containing devices have been shown to reduce pain and improve function in multiple patient populations. Although the number of publications and interest in carbon fiber AFOs is growing, a systematic evaluation of their effects is lacking. OBJECTIVES To characterize the effects of carbon fiber AFOs in impaired individuals. STUDY DESIGN Qualitative systematic review. METHODS Systematic searches in PubMed, Embase, CINAHL, and Cochrane Library were completed in July 2020. The results were deduplicated, screened, and assessed for quality by independent reviewers. Articles were excluded if they had nonhuman subjects, only healthy subjects, or included active control systems, motors, or other power sources. RESULTS Seventy-eight articles were included in the qualitative synthesis. Most articles were of low to moderate methodological quality. Five commonly used devices were identified: the Intrepid Dynamic Exoskeletal Orthosis, ToeOff, WalkOn, Neuro Swing, and Chignon. The devices have unique designs and are associated with specific populations. The Intrepid Dynamic Exoskeletal Orthosis was used in individuals with lower-limb trauma, the Neuro Swing and ToeOff in individuals with neurological disorders, the Chignon in individuals with hemiplegia and stroke, and the WalkOn in people with hemiplegia and cerebral palsy. Each device produced favorable outcomes in their respective populations of interest, such as increased walking speed, reduced pain, or improved balance. CONCLUSIONS The mechanical characteristics and designs of carbon fiber AFOs improve outcomes in the populations in which they are most studied. Future literature should diligently report patient population, device used, and fitting procedures.
Collapse
Affiliation(s)
- Megan M Grunst
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
5
|
Camuncoli F, Barbonetti A, Piccinini L, Di Stanislao E, Corbetta C, Dell’Orto G, Bertozzi F, Galli M. Analysis of Running Gait in Children with Cerebral Palsy: Barefoot vs. a New Ankle Foot Orthosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14203. [PMID: 36361083 PMCID: PMC9654245 DOI: 10.3390/ijerph192114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Running is an essential activity for children with cerebral palsy (CP). This study aims to characterize the locomotor pattern of running in hemiplegic children with new generation ankle foot orthosis (AFOs) conceived to foster intense motor activities such as running. A group of 18 children with spastic hemiplegia was recruited. A biomechanical multivariable comparison was made between barefoot and with AFO running trials. The focus was devoted to bilateral sagittal plane hip, knee, ankle kinematics and kinetics, and three-dimensional ground reaction forces. Wearing the orthoses, the children were found to reduce cadence and the duration of the stance phase as well as increase the step and stride length. The new AFO resulted in significant changes in kinematics of affected ankle both at initial contact 0-3% GC (p < 0.017) and during the entire swing phase 31-100%GC (p < 0.001) being the ankle more dorsiflexed with AFO compared to barefoot condition. Ankle power was found to differ significantly both in absorption and generation 5-10%GC (p < 0.001); 21-27%GC (p < 0.001) with a reduction in both cases when the AFO was worn. No statistical differences were recorded in the GRF components, in the affected ankle torque and hip and knee kinematics and kinetics.
Collapse
Affiliation(s)
- Federica Camuncoli
- Department of Electronics Information Technology and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alessia Barbonetti
- Department of Electronics Information Technology and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luigi Piccinini
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | | | - Claudio Corbetta
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy
| | - Gabriele Dell’Orto
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Filippo Bertozzi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Manuela Galli
- Department of Electronics Information Technology and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Schmidtbauer KA, Russell Esposito E, Wilken JM. Ankle-foot orthosis alignment affects running mechanics in individuals with lower limb injuries. Prosthet Orthot Int 2019; 43:316-324. [PMID: 30762469 DOI: 10.1177/0309364619826386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Individuals with severe lower extremity injuries often require ankle-foot orthoses to return to normal activities. Ankle-foot orthoses alignment is a key consideration during the clinical fitting process and may be particularly important during dynamic activities such as running. OBJECTIVE To investigate how 3° changes in sagittal plane ankle-foot orthoses alignment affect running mechanics. STUDY DESIGN Controlled laboratory study. METHODS Twelve participants with unilateral lower limb injury ran overground and lower extremity running mechanics were assessed. Participants wore their passive-dynamic ankle-foot orthoses in three alignments: clinically fit neutral, 3° plantarflexed from clinically fit neutral, and 3° dorsiflexed from clinically fit neutral. RESULTS The 3° changes in sagittal alignment significantly influenced ankle mechanics during running. The plantarflexed alignment significantly decreased the peak ankle plantarflexor moment, peak knee extensor moment, and peak ankle and knee power absorption and generation compared to more dorsiflexed alignments. Alignment also altered footstrike angle, with dorsiflexed alignments associated with a more dorsiflexed footstrike pattern and plantarflexed alignments toward a more plantarflexed footstrike pattern. However, alignment did not influence loading rate. CONCLUSION Small changes in ankle-foot orthoses alignment significantly altered running mechanics, including footstrike angle, and knee extensor moments. Understanding how ankle-foot orthoses design parameters affect running mechanics may aid the development of evidence-based prescription guidelines and improve function for ankle-foot orthoses users who perform high-impact activities. CLINICAL RELEVANCE Understanding how ankle-foot orthoses alignment impacts biomechanics should be a consideration when fitting passive-dynamic devices for higher impact activities, such as running. Individual running styles, including footstrike patterns, may be affected by small changes in alignment.
Collapse
Affiliation(s)
- Kelly A Schmidtbauer
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence.,3 Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA
| | - E Russell Esposito
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence.,3 Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Jason M Wilken
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence
| |
Collapse
|
7
|
Wach A, McGrady L, Wang M, Silver-Thorn B. Assessment of Mechanical Characteristics of Ankle-Foot Orthoses. J Biomech Eng 2018; 140:2677749. [DOI: 10.1115/1.4039816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/08/2022]
Abstract
Recent designs of ankle-foot orthoses (AFOs) have been influenced by the increasing demand for higher function from active individuals. The biomechanical function of the individual and device is dependent upon the underlying mechanical characteristics of the AFO. Prior mechanical testing of AFOs has primarily focused on rotational stiffness to provide insight into expected functional outcomes; mechanical characteristics pertaining to energy storage and release have not yet been investigated. A pseudostatic bench testing method is introduced to characterize compressive stiffness, device deflection, and motion of solid-ankle, anterior floor reaction, posterior leaf spring, and the intrepid dynamic exoskeletal orthosis (IDEO) AFOs. Each of these four AFOs, donned over a surrogate limb, were compressively loaded at different joint angles to simulate the foot-shank orientation during various subphases of stance. In addition to force–displacement measurements, deflection of each AFO strut and rotation of proximal and supramalleolar segments were analyzed. Although similar compressive stiffness values were observed for AFOs designed to reduce ankle motion, the corresponding strut deflection profile differed based on the respective fabrication material. For example, strut deflection of carbon-fiber AFOs resembled column buckling. Expanded clinical test protocols to include quantification of AFO deflection and rotation during subject use may provide additional insight into design and material effects on performance and functional outcomes, such as energy storage and release.
Collapse
Affiliation(s)
- Amanda Wach
- Department of Biomedical Engineering, Marquette University, Olin Engineering Center, Room 206, 1515 W. Wisconsin Avenue, Milwaukee, WI 53233 e-mail:
| | - Linda McGrady
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mei Wang
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | | |
Collapse
|
8
|
Koller C, Arch ES. State of the Prescription Process for Dynamic Ankle-Foot Orthoses. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2018. [DOI: 10.1007/s40141-018-0177-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|