1
|
Tavares NMB, Silva JM, da Silva MDM, Silva LDT, de Souza JN, Ithamar L, Raposo MCF, Melo RS. Balance, Gait, Functionality and Fall Occurrence in Adults and Older Adults with Type 2 Diabetes Mellitus and Associated Peripheral Neuropathy. Clin Pract 2024; 14:2044-2055. [PMID: 39451876 PMCID: PMC11505698 DOI: 10.3390/clinpract14050161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Body balance is regulated by sensory information from the vestibular, visual and somatosensory systems, and changes in one or more of these sensory systems can trigger balance disorders. Individuals with type 2 Diabetes Mellitus (DM2) often present peripheral neuropathy, a condition that alters foot sensory information and can negatively influence balance and gait performance of these subjects. OBJECTIVE To evaluate and compare balance, gait, functionality and the occurrence of falls between individuals with and without a clinical diagnosis of DM2 with associated peripheral neuropathy. METHODS Cross-sectional study, which evaluated seventy individuals, thirty-five with and thirty-five without a clinical diagnosis of DM2, of both sexes and age range between 50 and 85 years, who were recruited from Basic Health Units of Serra Talhada, Pernambuco state, Brazil. The volunteers' balance was analyzed using the Berg Balance Scale, gait-related functional tasks were measured using the Dynamic Gait Index, functional mobility was assessed using the Timed Up and Go test and functionality was assessed using the Katz Index. The occurrence of falls was recorded by the volunteers' self-report. RESULTS Individuals with DM2 demonstrated the worst performance in balance (p = 0.000) and in gait-related functional tasks (p = 0.000), slower functional mobility (p = 0.000) and worse functionality (p = 0.016) compared to the group without DM2, demonstrating significant differences for all analyzed outcomes. A greater occurrence of falls was observed in individuals with DM2, compared to those without the disease (p = 0.019). CONCLUSION Individuals with DM2 demonstrated worse performance on balance, gait-related functional tasks, slower functional mobility and worse functionality compared to those without the disease. Individuals with DM2 had the highest occurrence of falls in this study.
Collapse
Affiliation(s)
| | - Jonathânya Marques Silva
- Department of Physical Therapy, Faculdade de Integração do Sertão (FIS), Serra Talhada 56909-205, PE, Brazil
| | | | | | | | - Lucas Ithamar
- Department of Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| | | | - Renato S. Melo
- Department of Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
- Department of Medicine, Faculdade de Medicina do Sertão (FMS), Arcoverde 56512-670, PE, Brazil
| |
Collapse
|
2
|
Elie OS, Franz JR, Selgrade BP. The Effects of Optical Flow Perturbations on Standing Balance in People With Multiple Sclerosis. J Appl Biomech 2024; 40:122-128. [PMID: 37963452 DOI: 10.1123/jab.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Multiple sclerosis is a neurodegenerative disease that causes balance deficits, even in early stages. Evidence suggests that people with multiple sclerosis (PwMS) rely more on vision to maintain balance, and challenging balance with optical flow perturbations may be a practical screening for balance deficits. Whether these perturbations affect standing balance in PwMS is unknown. Therefore, the purpose of this study was to examine how optical flow perturbations affect standing balance in PwMS. We hypothesized that perturbations would cause higher variability in PwMS compared with matched controls during standing and that standing balance would be more susceptible to anterior-posterior (A-P) perturbations than medial-lateral (M-L) perturbations. Thirteen PwMS and 13 controls stood under 3 conditions: unperturbed, M-L perturbation, and A-P perturbations. A-P perturbations caused significantly higher A-P trunk sway variability in PwMS than controls, although both groups had similar center-of-pressure variability. Both perturbations increased variability in A-P trunk sway and center of pressure. Trunk variability data supported the hypothesis that PwMS were more susceptible to optical flow perturbations than controls. However, the hypothesis that A-P perturbations would affect balance more than M-L perturbations was partially supported. These results suggest potential for optical flow perturbations to identify balance deficits in PwMS.
Collapse
Affiliation(s)
- Olivia S Elie
- Department of Sports Medicine and Human Performance, Westfield State University, Westfield, MA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Brian P Selgrade
- Department of Sports Medicine and Human Performance, Westfield State University, Westfield, MA, USA
| |
Collapse
|
3
|
Brough LG, Neptune RR. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking. Gait Posture 2024; 108:313-319. [PMID: 38199090 DOI: 10.1016/j.gaitpost.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Balance perturbation studies during walking have improved our understanding of balance control in various destabilizing conditions. However, it is unknown to what extent balance recovery strategies can be generalized across different types of mediolateral balance perturbations. RESEARCH QUESTION Do similar mediolateral perturbations (foot placement versus surface translation) have similar effects on balance control and corresponding balance response strategies? METHODS Kinetic and kinematic data were previously collected during two separate studies, each with 15 young, healthy participants walking on an instrumented treadmill. In both studies, medial and lateral balance perturbations were applied at 80% of the gait cycle either by a treadmill surface translation or a pneumatic force applied to the swing foot. Differences in balance control (frontal plane whole body angular momentum) and balance response strategies (hip abduction moment, ankle inversion moment, center of pressure excursion and frontal plane trunk moment) between perturbed and unperturbed gait cycles were evaluated using statistical parametric mapping. RESULTS Balance disruptions after foot placement perturbations were larger and sustained longer compared to surface translations. Changes in joint moment responses were also larger for the foot placement perturbations compared to the surface translation perturbations. Lateral hip, ankle, and trunk strategies were used to maintain balance after medial foot placement perturbations, while a trunk strategy was primarily used after surface translations. SIGNIFICANCE Surface and foot placement perturbations influence balance control and corresponding response strategies differently. These results can help inform the development of perturbation-based balance training interventions aimed at reducing fall risk in clinical populations.
Collapse
Affiliation(s)
- Lydia G Brough
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Jeon W, Ramadan A, Whitall J, Alissa N, Westlake K. Age-related differences in lower limb muscle activation patterns and balance control strategies while walking over a compliant surface. Sci Rep 2023; 13:16555. [PMID: 37783842 PMCID: PMC10545684 DOI: 10.1038/s41598-023-43728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Substantial evidence demonstrates that falls in older adults are leading causes of fatal and non-fatal injuries and lead to negative impacts on the quality of life in the aging population. Most falls in older fallers result from unrecoverable limb collapse during falling momentum control in the single limb support (SLS) phase. To understand why older adults are more likely to fall than younger adults, we investigated age-related differences in knee extensor eccentric control, lower limb muscle activation patterns, and their relation to balance control. Ten older and ten younger healthy adults were compared during balance control while walking on a compliant surface. There was a positive correlation between knee extensor eccentric work in the perturbed leg and the swinging leg's speed and margin of stability. In comparison to younger adults, older adults demonstrated (1) less eccentric work, reduced eccentric electromyography burst duration in the perturbed leg, (2) higher postural sway during SLS, and (3) impaired swinging leg balance control. The group-specific muscle synergy showed that older adults had a prominent ankle muscle activation, while younger adults exhibited a more prominent hip muscle activation. These findings provide insight into targeted balance rehabilitation directions to improve postural stability and reduce falls in older adults.
Collapse
Affiliation(s)
- Woohyoung Jeon
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, USA.
| | - Ahmed Ramadan
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nesreen Alissa
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kelly Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhu Y, Huang J, Ma X, Chen WM. A neuromusculoskeletal modelling approach to bilateral hip mechanics due to unexpected lateral perturbations during overground walking. BMC Musculoskelet Disord 2023; 24:775. [PMID: 37784076 PMCID: PMC10544490 DOI: 10.1186/s12891-023-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Current studies on how external perturbations impact gait dynamics have primarily focused on the changes in the body's center of mass (CoM) during treadmill walking. The biomechanical responses, in particular to the multi-planar hip joint coordination, following perturbations in overground walking conditions are not completely known. METHODS In this study, a customized gait-perturbing device was designed to impose controlled lateral forces onto the subject's pelvis during overground walking. The biomechanical responses of bilateral hips were simulated by subject-specific neuromusculoskeletal models (NMS) driven by in-vivo motion data, which were further evaluated by statistical parameter mapping (SPM) and muscle coactivation index (CI) analysis. The validity of the subject-specific NMS was confirmed through comparison with measured surface electromyographic signals. RESULTS Following perturbations, the sagittal-plane hip motions were reduced for the leading leg by 18.39° and for the trailing leg by 8.23°, while motions in the frontal and transverse plane were increased, with increased hip abduction for the leading leg by 10.71° and external rotation by 9.06°, respectively. For the hip kinetics, both the bilateral hip joints showed increased abductor moments during midstance (20%-30% gait cycle) and decreased values during terminal stance (38%-48%). Muscle CI in both sagittal and frontal planes was significantly decreased for perturbed walking (p < 0.05), except for the leading leg in the sagittal plane. CONCLUSION The distinctive phase-dependent biomechanical response of the hip demonstrated its coordinated control strategy for balance recovery due to gait perturbations. And the changes in muscle CI suggested a potential mechanism for rapid and precise control of foot placement through modulation of joint stiffness properties. These findings obtained during actual overground perturbation conditions could have implications for the improved design of wearable robotic devices for balance assistance.
Collapse
Affiliation(s)
- Yunchao Zhu
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Ji Huang
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin Ma
- National Clinical Research Center for Geriatric Diseases (NCRCGD), Huashan Hospital Affiliated to Fudan University, No.12, Wulumuqi Middle Rd., Shanghai, 200040, China
| | - Wen-Ming Chen
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| |
Collapse
|
6
|
Melo RS, Cardeira CSF, Rezende DSA, Guimarães-do-Carmo VJ, Lemos A, de Moura-Filho AG. Effectiveness of the aquatic physical therapy exercises to improve balance, gait, quality of life and reduce fall-related outcomes in healthy community-dwelling older adults: A systematic review and meta-analysis. PLoS One 2023; 18:e0291193. [PMID: 37683025 PMCID: PMC10490910 DOI: 10.1371/journal.pone.0291193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Opting to use aquatic or land-based physical therapy exercises to improve balance, gait, quality of life and reduce fall-related outcomes in community-dwelling older adults (CDOAs) is still a questionable clinical decision for physiotherapists. OBJECTIVE Assess the quality of evidence from randomized or quasi-randomized controlled trials that used aquatic physical therapy exercises to improve balance, gait, quality of life and reduce fall-related outcomes in CDOAs. METHODS Articles were surveyed in the following databases: MEDLINE/PubMed, EMBASE, SCOPUS, LILACS, Web of Science, CENTRAL (Cochrane Central Register of Controlled Trials), PEDro, CINAHL, SciELO and Google Scholar, published in any language, up to July 31, 2023. Two independent reviewers extracted the data and assessed evidence quality. The risk of bias of the trials was evaluated by the Cochrane tool and evidence quality by GRADE approach. Review Manager software was used to conduct the meta-analyses. RESULTS 3007 articles were identified in the searches, remaining 33 studies to be read in full, with 11 trials being eligible for this systematic review. The trials included presented low evidence quality for the balance, gait, quality of life and fear of falling. Land-based and aquatic physical therapy exercises improved the outcomes analyzed; however, aquatic physical therapy exercises were more effective in improving balance, gait, quality of life and reducing fear of falling in CDOAs. The meta-analysis showed that engaging in aquatic physical therapy exercises increases the functional reach, through of the anterior displacement of the center of pressure of CDOAs by 6.36cm, compared to land-based physical therapy exercises, assessed by the Functional Reach test: [CI:5.22 to 7.50], (p<0.00001), presenting low quality evidence. CONCLUSIONS Aquatic physical therapy exercises are more effective than their land-based counterparts in enhancing balance, gait, quality of life and reducing the fear of falling in CDOAs. However, due to methodological limitations of the trials, this clinical decision remains inconclusive. It is suggested that new trials be conducted with greater methodological rigor, in order to provide high-quality evidence on the use of the aquatic physical therapy exercises to improve the outcomes analyzed in CDOAs.
Collapse
Affiliation(s)
- Renato S. Melo
- Department of Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Post-Graduate Program in Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | | | | | - Andrea Lemos
- Department of Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Post-Graduate Program in Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Alberto Galvão de Moura-Filho
- Department of Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Post-Graduate Program in Physical Therapy, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Tillman M, Molino J, Zaferiou AM. Gait-phase specific transverse-plane momenta generation during pre-planned and late-cued 90 degree turns while walking. Sci Rep 2023; 13:6846. [PMID: 37100853 PMCID: PMC10133231 DOI: 10.1038/s41598-023-33667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Turning while walking is ubiquitous and requires linear and angular momenta generation to redirect the body's trajectory and rotate towards the new direction of travel. This study examined strategies that healthy young adults used during each gait phase to generate transverse-plane momenta during pre-planned and late-cued 90° turns. During leftward turns, we expected that momenta would be generated most during the gait phases known to generate leftward linear and angular momenta during straight line gait. We found distinct roles of gait phases towards generating momenta during turns that partially supported our hypotheses. Supporting one hypothesis, the change in transverse-plane angular momentum and average moment were greater during double support with the left foot in front vs. other gait phases. Also, the change in leftward linear momentum and average leftward force were greater during right single support vs. other gait phases during straight-line gait and late-cued turns. However, during pre-planned turns, the average leftward force was not significantly greater during right single support vs. other gait phases. Overall, transverse-plane angular momentum generation during turns is similar to its generation during straight-line gait, suggesting that healthy young adults can leverage momenta control strategies used during straight-line gait during turns.
Collapse
Affiliation(s)
- Mitchell Tillman
- Department of Biomedical Engineering, Stevens Institute of Technology, Castle Point on the Hudson, Hoboken, NJ, 07030, USA
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
- Lifespan Biostatistics, Epidemiology, and Research Design Core, Rhode Island Hospital, Providence, RI, USA
| | - Antonia M Zaferiou
- Department of Biomedical Engineering, Stevens Institute of Technology, Castle Point on the Hudson, Hoboken, NJ, 07030, USA.
| |
Collapse
|
8
|
Peterka RJ, Gruber-Fox A, Heeke PK. Asymmetry measures for quantification of mechanisms contributing to dynamic stability during stepping-in-place gait. Front Neurol 2023; 14:1145283. [PMID: 37153656 PMCID: PMC10157157 DOI: 10.3389/fneur.2023.1145283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
The goal of this study is to introduce and to motivate the use of new quantitative methods to improve our understanding of mechanisms that contribute to the control of dynamic balance during gait. Dynamic balance refers to the ability to maintain a continuous, oscillating center-of-mass (CoM) motion of the body during gait even though the CoM frequently moves outside of the base of support. We focus on dynamic balance control in the frontal plane or medial-lateral (ML) direction because it is known that active, neurally-mediated control mechanisms are necessary to maintain ML stability. Mechanisms that regulate foot placement on each step and that generate corrective ankle torque during the stance phase of gait are both known to contribute to the generation of corrective actions that contribute to ML stability. Less appreciated is the potential role played by adjustments in step timing when the duration of the stance and/or swing phases of gait can be shortened or lengthened to allow torque due to gravity to act on the body CoM over a shorter or longer time to generate corrective actions. We introduce and define four asymmetry measures that provide normalized indications of the contribution of these different mechanisms to gait stability. These measures are 'step width asymmetry', 'ankle torque asymmetry', 'stance duration asymmetry', and 'swing duration asymmetry'. Asymmetry values are calculated by comparing corresponding biomechanical or temporal gait parameters from adjacent steps. A time of occurrence is assigned to each asymmetry value. An indication that a mechanism is contributing to ML control is obtained by comparing asymmetry values to the ML body motion (CoM angular position and velocity) at the time points associated with the asymmetry measures. Example results are demonstrated with measures obtained during a stepping-in-place (SiP) gait performed on a stance surface that either remained fixed and level or was pseudorandomly tilted to disturb balance in the ML direction. We also demonstrate that the variability of asymmetry measures obtained from 40 individuals during unperturbed, self-paced SiP were highly correlated with corresponding coefficient of variation measures that have previously been shown to be associated with poor balance and fall risk.
Collapse
Affiliation(s)
- Robert J. Peterka
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Robert J. Peterka,
| | - Apollonia Gruber-Fox
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
| | - Paige K. Heeke
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
9
|
Ren X, Lutter C, Kebbach M, Bruhn S, Bader R, Tischer T. Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects. BMC Geriatr 2022; 22:656. [PMID: 35948887 PMCID: PMC9367084 DOI: 10.1186/s12877-022-03354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The lower extremity may play a crucial role in compensating for gait perturbations. The study aimed to explore the mechanism of perturbation compensation by investigating the gait characteristics and lower extremity joint moment effects in young (YS) and older subjects (OS) during the first recovery gait following slipping (slipping_Rec1) and stumbling (stumbling_Rec1). METHOD An automatic perturbation-triggered program was developed using D-Flow software based on the Gait Real-time Analysis Interactive Lab to induce the two aforementioned perturbations. Marker trajectories and ground reaction forces were recorded from 15 healthy YS (age: 26.53 ± 3.04 years; body height: 1.73 ± 0.07 m; body mass: 66.81 ± 11.44 kg) and 15 healthy OS (age: 68.33 ± 3.29 years; body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg). The Human Body Model was used to compute the variables of interest. One-way analysis of variance and independent samples t-test statistical analyses were performed. RESULTS In slipping_Rec1 and stumbling_Rec1, the change in gait pattern was mainly reflected in a significant increase in step width, no alterations in step length and stance/swing ratio were revealed. Based on perturbed task specificity, lower extremity joint moments increased or decreased at specific phases of the gait cycle in both YS and OS in slipping_Rec1 and stumbling_Rec1 compared to normal gait. The two perturbed gaits reflected the respective compensatory requirements for the lower extremity joints, with both sagittal and frontal joint moments producing compensatory effects. The aging effect was not reflected in the gait pattern, but rather in the hip extension moment during the initial stance of slipping_Rec1. CONCLUSIONS Slipping appears to be more demanding for gait recovery than stumbling. Gait perturbation compensatory mechanisms for OS should concentrate on ankle strategy in the frontal plane and counter-rotation strategy around the hip.
Collapse
Affiliation(s)
- Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, China.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany.
| | - Christoph Lutter
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Maeruan Kebbach
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, 18051, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Thomas Tischer
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| |
Collapse
|
10
|
McCabe JP, Pundik S, Daly JJ. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sci 2022; 12:1055. [PMID: 36009118 PMCID: PMC9405607 DOI: 10.3390/brainsci12081055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions.
Collapse
Affiliation(s)
- Jessica P. McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Janis J. Daly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
11
|
Ahuja S, Franz JR. The metabolic cost of walking balance control and adaptation in young adults. Gait Posture 2022; 96:190-194. [PMID: 35696824 DOI: 10.1016/j.gaitpost.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Our aim was to quantify the role of metabolic energy cost in governing neuromuscular adaptation to prolonged exposure to optical flow walking balance perturbations in young adults. RESEARCH QUESTION We hypothesized that metabolic cost would increase at the onset of balance perturbations in a manner consistent with wider and shorter steps and increased step-to-step variability. We also hypothesized that metabolic cost would decrease with prolonged exposure in a manner consistent with a return of step width and step length to values seen during normal, unperturbed walking. METHODS Healthy young adults (n = 18) walked on a treadmill while viewing a virtual hallway. Optical flow balance perturbations were introduced over a 10-minute interval during a 20-minute walking bout while measuring step kinematics and metabolic energy cost. For all outcome measures, we computed average values during the following four time periods of interest: Pre (minutes 3-5), Early Perturbation (minutes 5-7), Late Perturbation (minutes 13-15), and Post (minutes 18-20). A repeated-measures ANOVA tested for main effects of time, following by post-hoc pairwise comparisons. RESULTS With the onset of perturbations, participants walked with 3% shorter, 17% wider, and 53-73% more variable steps. These changes were accompanied by a significant 12% increase in net metabolic power compared to walking normally. With prolonged exposure to perturbations, step width and step length tended toward values seen during normal, unperturbed walking - changes accompanied by a 5% reduction in metabolic power (p-values≤0.05). SIGNIFICANCE Our study reveals that the adoption of generalized anticipatory control at the onset of optical flow balance perturbations and the subsequent shift to task-specific reactive control following prolonged exposure have meaningful metabolic consequences. Moreover, our findings suggest that metabolic energy cost may shape the strategies we use to adapt walking balance in response to perturbations.
Collapse
Affiliation(s)
- Shawn Ahuja
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Mitchell A, Martin AE. Quantifying the effect of sagittal plane joint angle variability on bipedal fall risk. PLoS One 2022; 17:e0262749. [PMID: 35081142 PMCID: PMC8791504 DOI: 10.1371/journal.pone.0262749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Falls are a major issue for bipeds. For elderly adults, falls can have a negative impact on their quality of life and lead to increased medical costs. Fortunately, interventional methods are effective at reducing falls assuming they are prescribed. For biped robots, falls prevent them from completing required tasks. Thus, it is important to understand what aspects of gait increase fall risk. Gait variability may be associated with increased fall risk; however, previous studies have not investigated the variation in the movement of the legs. The purpose of this study was to determine the effect of joint angle variability on falling to determine which component(s) of variability were statistically significant. In order to investigate joint angle variability, a physics-based simulation model that captured joint angle variability as a function of time through Fourier series was used. This allowed the magnitude, the frequency mean, and the frequency standard deviation of the variability to be altered. For the values tested, results indicated that the magnitude of the variability had the most significant impact on falling, and specifically that the stance knee flexion variability magnitude was the most significant factor. This suggests that increasing the joint variability magnitude may increase fall risk, particularly if the controller is not able to actively compensate. Altering the variability frequency had little to no effect on falling.
Collapse
Affiliation(s)
- Amy Mitchell
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Anne E. Martin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Taheri S, Yoshida T, Böker KO, Foerster RH, Jochim L, Flux AL, Grosskopf B, Lehmann W, Schilling AF. Investigating the Microchannel Architectures Inside the Subchondral Bone in Relation to Estimated Hip Reaction Forces on the Human Femoral Head. Calcif Tissue Int 2021; 109:510-524. [PMID: 34023913 PMCID: PMC8484212 DOI: 10.1007/s00223-021-00864-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The interplay between articular cartilage (AC) and subchondral bone (SB) plays a pivotal role in cartilage homeostasis and functionality. As direct connective pathways between the two are poorly understood, we examined the location-dependent characteristics of the 3D microchannel network within the SB that connects the basal cartilage layer to the bone marrow (i.e. cartilage-bone marrow microchannel connectors; CMMC). 43 measuring points were defined on five human cadaveric femoral heads with no signs of osteoarthritis (OA) (age ≤ 60), and cartilage-bone cylinders with diameters of 2.00 mm were extracted for high-resolution scanning (n = 215). The micro-CT data were categorized into three groups (load-bearing region: LBR, n = 60; non-load-bearing region: NLBR, n = 60; and the peripheral rim: PR, n = 95) based on a gait analysis estimation of the joint reaction force (young, healthy cohort with no signs of OA). At the AC-SB interface, the number of CMMC in the LBR was 1.8 times and 2.2 times higher compared to the NLBR, and the PR, respectively. On the other hand, the median Feret size of the CMMC were smallest in the LBR (55.2 µm) and increased in the NLBR (73.5 µm; p = 0.043) and the PR (89.1 µm; p = 0.043). AC thickness was positively associated with SB thickness (Pearson's r = 0.48; p < 1e-13), CMMC number. (r = 0.46; p < 1e-11), and circularity index (r = 0.61; p < 1e-38). In conclusion, our data suggest that regional differences in the microchannel architecture of SB might reflect regional differences in loading.
Collapse
Affiliation(s)
- Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Takashi Yoshida
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kai O Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robert H Foerster
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lina Jochim
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Lena Flux
- Department of Historical Anthropology and Human Ecology, University of Göttingen Johann-Friedrich-Blumenbach, Institute for Zoology & Anthropology, Göttingen, Germany
| | - Birgit Grosskopf
- Department of Historical Anthropology and Human Ecology, University of Göttingen Johann-Friedrich-Blumenbach, Institute for Zoology & Anthropology, Göttingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Lee HW, Beak HJ, Yoon EJ, Kim J. Effect of Instrument-Assisted Soft Tissue Mobilization on Ankle of Range of Motion and Balance in Older Women: A Preliminary Study. THE ASIAN JOURNAL OF KINESIOLOGY 2021. [DOI: 10.15758/ajk.2021.23.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This study aims to investigate the effects of instrument-assisted soft tissue mobilization (IASTM) on ankle range of motion (ROM) and balance in older women.METHODS The 20 older women with a history of falls participated in the study, and the study subjects were randomly divided into the IASTM group (n=10) and control group (n=10).RESULTS There were no significant interactions between group and time for ankle ROM and functional reach after 8 weeks of IASTM on older women (P>0.05). Meanwhile, there were significant interactions between group and time for one-leg standing and star excursion balance (P<0.05), and in particular, the IASTM group had greater improvements compared to the control group.CONCLUSION In conclusion, the regular application of IASTM has been shown to improve the balance of older women with a history of falls.
Collapse
|
15
|
Osaba MY, Martelli D, Prado A, Agrawal SK, Lalwani AK. Age-related differences in gait adaptations during overground walking with and without visual perturbations using a virtual reality headset. Sci Rep 2020; 10:15376. [PMID: 32958807 PMCID: PMC7505838 DOI: 10.1038/s41598-020-72408-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022] Open
Abstract
Older adults have difficulty adapting to new visual information, posing a challenge to maintain balance during walking. Virtual reality can be used to study gait adaptability in response to discordant sensorimotor stimulations. This study aimed to investigate age-related modifications and propensity for visuomotor adaptations due to continuous visual perturbations during overground walking in a virtual reality headset. Twenty old and twelve young subjects walked on an instrumented walkway in real and virtual environments while reacting to antero-posterior and medio-lateral oscillations of the visual field. Mean and variability of spatiotemporal gait parameters were calculated during the first and fifth minutes of walking. A 3-way mixed-design ANOVA was performed to determine the main and interaction effects of group, condition and time. Both groups modified gait similarly, but older adults walked with shorter and slower strides and did not reduce stride velocity or increase stride width variability during medio-lateral perturbations. This may be related to a more conservative and anticipatory strategy as well as a reduced perception of the optic flow. Over time, participants adapted similarly to the perturbations but only younger participants reduced their stride velocity variability. Results provide novel evidence of age- and context-dependent visuomotor adaptations in response to visual perturbations during overground walking and may help to establish new methods for early identification and remediation of gait deficits.
Collapse
Affiliation(s)
- Muyinat Y Osaba
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Dario Martelli
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Antonio Prado
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.,Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, Harkness Pavilion, 8th Floor, New York, NY, 10032, USA. .,New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
16
|
Reimann H, Ramadan R, Fettrow T, Hafer JF, Geyer H, Jeka JJ. Interactions Between Different Age-Related Factors Affecting Balance Control in Walking. Front Sports Act Living 2020; 2:94. [PMID: 33345085 PMCID: PMC7739654 DOI: 10.3389/fspor.2020.00094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022] Open
Abstract
Maintaining balance during walking is a continuous sensorimotor control problem. Throughout the movement, the central nervous system has to collect sensory data about the current state of the body in space, use this information to detect possible threats to balance and adapt the movement pattern to ensure stability. Failure of this sensorimotor loop can lead to dire consequences in the form of falls, injury and death. Such failures tend to become more prevalent as people get older. While research has established a number of factors associated with higher risk of falls, we know relatively little about age-related changes of the underlying sensorimotor control loop and how such changes are related to empirically established risk factors. This paper approaches the problem of age-related fall risk from a neural control perspective. We begin by summarizing recent empirical findings about the neural control laws mapping sensory input to motor output for balance control during walking. These findings were established in young, neurotypical study populations and establish a baseline of sensorimotor control of balance. We then review correlates for deteriorating balance control in older adults, of muscle weakness, slow walking, cognitive decline, and increased visual dependency. While empirical associations between these factors and fall risk have been established reasonably well, we know relatively little about the underlying causal relationships. Establishing such causal relationships is hard, because the different factors all co-vary with age and are difficult to isolate empirically. One option to analyze the role of an individual factor for balance control is to use computational models of walking comprising all levels of the sensorimotor control loop. We introduce one such model that generates walking movement patterns from a short list of spinal reflex modules with limited supraspinal modulation for balance. We show how this model can be used to simulate empirical studies, and how comparison between the model and empirical results can indicate gaps in our current understanding of balance control. We also show how different aspects of aging can be added to this model to study their effect on balance control in isolation.
Collapse
Affiliation(s)
- Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Rachid Ramadan
- Institute for Neural Computation, Ruhr University, Bochum, Germany
| | - Tyler Fettrow
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jocelyn F. Hafer
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Hartmut Geyer
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - John J. Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
17
|
Selgrade BP, Meyer D, Sosnoff JJ, Franz JR. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis? PLoS One 2020; 15:e0230202. [PMID: 32155225 PMCID: PMC7064213 DOI: 10.1371/journal.pone.0230202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 12/04/2022] Open
Abstract
People with multiple sclerosis (PwMS) who exhibit minimal to no disability are still over twice as likely to fall as the general population and many of these falls occur during walking. There is a need for more effective ways to detect preclinical walking balance deficits in PwMS. Therefore, the purpose of this study was to investigate the effects of optical flow perturbations applied using virtual reality on walking balance in PwMS compared to age-matched controls. We hypothesized that susceptibility to perturbations–especially those in the mediolateral direction–would be larger in PwMS compared to controls. Fourteen PwMS and fourteen age-matched controls walked on a treadmill while viewing a virtual hallway with and without optical flow perturbations in the mediolateral or anterior-posterior directions. We quantified foot placement kinematics, gait variability, lateral margin of stability and, in a separate session, performance on the standing sensory organization test (SOT). We found only modest differences between groups during normal, unperturbed walking. These differences were larger and more pervasive in the presence of mediolateral perturbations, evidenced by higher variability in step width, sacrum position, and margin of stability at heel-strike in PwMS than controls. PwMS also performed worse than controls on the SOT, and there was a modest correlation between step width variability during perturbed gait and SOT visual score. In conclusion, mediolateral optical flow perturbations revealed differences in walking balance in PwMS that went undetected during normal, unperturbed walking. Targeting this difference may be a promising approach to more effectively detect preclinical walking balance deficits in PwMS.
Collapse
Affiliation(s)
- Brian P. Selgrade
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Diane Meyer
- UNC Healthcare, UNC Center for Rehabilitation Care, Chapel Hill, NC, United States of America
| | - Jacob J. Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, IL, United States of America
| | - Jason R. Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kim JH, Won BH. Kinematic on Ankle and Knee Joint of Post-Stroke Elderly Patients by Wearing Newly Elastic Band-Type Ankle-Foot Orthosis in Gait. Clin Interv Aging 2019; 14:2097-2104. [PMID: 31824140 PMCID: PMC6901042 DOI: 10.2147/cia.s222087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose The post-stroke elderly was increased caused by increasing stroke and advanced medical. However, ankle–foot orthoses (AFOs) can be uncomfortable for hemiplegic patients; therefore, the usability is not good. In this study, we analyzed ankle and knee joint angles in post-stroke elderly patients to assess the functional effectiveness (specifically prevention of back knee and drop-foot) of a new elastic band-type AFO (New Product: NP) during gait. Patients and methods Nine elderly post-stroke patients (eight males, one female; 55.7±8.4 years; 165.8±9.2 cm; 68.8±11.5 kg; five with right hemiplegia, four with left hemiplegia; onset period: 6.6 years) were selected for participation in this study. We captured gait motion using 12 cameras (MX-T20, Vicon, Inc., Oxford, UK) under three different conditions [wearing nothing (WI), using existing ordinary AFOs made from hard plastic material (EP), and using NP]. The angle variation and maximum–minimum angle of the lower body joints were analyzed during dorsi-plantar flexion of the ankle joint and flexion–extension of knee joint. A one-way ANOVA test for multiple comparisons was performed, followed by a Tukey’s b test to identify statistical significance, which was set at 0.005. Results Regarding the ankle joint, the maximum plantar flexion (drop-foot) value decreased with the NP, and the maximum dorsiflexion value increased. Regarding the knee joint, the maximum extension (back knee) value decreased, and the maximum flexion value increased (p < 0.005). Conclusion Using analysis of the kinematics of the ankles and knees during walking, this research confirmed the effectiveness of the NP, an elastic band-type AFO, for use in ordinary post-stroke elderly patients.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Biomedical System & Technology Group, Korea Institute of Industrial Technology, Cheonan, Chungnam, South Korea
| | - Byeong Hee Won
- Biomedical System & Technology Group, Korea Institute of Industrial Technology, Cheonan, Chungnam, South Korea
| |
Collapse
|
19
|
Qiao M, Richards JT, Franz JR. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking. Hum Mov Sci 2019; 68:102525. [PMID: 31731210 DOI: 10.1016/j.humov.2019.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Prior work demonstrates that humans spontaneously synchronize their head and trunk kinematics to a broad range of driving frequencies of perceived mediolateral motion prescribed using optical flow. Using a closed-loop visuomotor error augmentation task in an immersive virtual environment, we sought to understand whether unifying visual with vestibular and somatosensory feedback is a control goal during human walking, at least in the context of head and trunk stabilization. We hypothesized that humans would minimize visual errors during walking - i.e., those between the visual perception of movement and actual movement of the trunk. We found that subjects did not minimize errors between the visual perception of movement and actual movement of the head and trunk. Rather, subjects increased mediolateral trunk range of motion in response to error-augmented optical flow with positive feedback gains. Our results are more consistent with our alternative hypothesis - that visual feedback can override other sensory modalities and independently compel adjustments in head and trunk position. Also, aftereffects following exposure to error-augmented optical flow included longer, narrower steps and reduced mediolateral postural sway, particularly in response to larger amplitude positive feedback gains. Our results allude to a recalibration of head and trunk stabilization toward more tightly regulated postural control following exposure to error-augmented visual feedback. Lasting reductions in mediolateral postural sway may have implications for using error-augmented optical flow to enhance the integrity of walking balance control through training, for example in older adults.
Collapse
Affiliation(s)
- Mu Qiao
- Department of Kinesiology, Louisiana Tech University, Ruston, LA, USA.
| | - Jackson T Richards
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Argaud S, Pairot de Fontenay B, Blache Y, Monteil K. Age-related differences of inter-joint coordination in elderly during squat jumping. PLoS One 2019; 14:e0221716. [PMID: 31498811 PMCID: PMC6733476 DOI: 10.1371/journal.pone.0221716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Explosive movement requires that the individual exerts force and power with appropriate magnitude and timing. These coordination aspects have received less attention despite being a basic prerequisite for daily mobility and physical autonomy, especially in older people. Therefore, the purpose of this study is to characterize the effect of age on inter-joint coordination during explosive movement. Methods Twenty-one elderly and twenty young participants performed three maximal vertical jumps, while kinematics were recorded throughout each squat jump. Inter-joint coordination and coordination variability were calculated for selected sagittal hip-knee, knee-ankle, and hip-ankle joint couplings using the continuous relative phase method. Results The young participants produced significantly greater jump height performance (0.36 ± 0.07 m vs. 0.12 ± 0.04 m, p < 0.001). The mean absolute continuous relative phase for ankle-knee and knee-hip joint couplings were significantly greater for the elderly in comparison to the young group (p < 0.01 for the both). No significant differences between senior and young participants in the mean absolute continuous relative phase for ankle-hip joint couplings (p = 0.25) was observed. However, there was significantly more variability in inter-joint coordination in the elderly marked by greater continuous relative phase variabilities in ankle-knee, ankle-hip and knee-hip joint couplings (p < 0.001) than those observed in young adults. Conclusion In this study, seniors demonstrated proximodistal inter-joint coordination but with different delays in the pattern of inter-joint coordination during squat jumps compared to young adults. In addition, a higher continuous relative phase variability in the elderly may be needed to improve stability or compensate for strength deficits in jump achievement.
Collapse
Affiliation(s)
- Sébastien Argaud
- Laboratoire Inter-Université de Biologie de la Motricité, Université Lyon, Lyon, France
| | - Benoit Pairot de Fontenay
- Centre interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Institut de Réadaptation en Déficiences Physique de Québec (IRDPQ), Université de Laval, Québec, Canada
| | - Yoann Blache
- Laboratoire Inter-Université de Biologie de la Motricité, Université Lyon, Lyon, France
| | - Karine Monteil
- Laboratoire Inter-Université de Biologie de la Motricité, Université Lyon, Lyon, France
| |
Collapse
|
21
|
Gait profile score identifies changes in gait kinematics in nonfaller, faller and recurrent faller older adults women. Gait Posture 2019; 72:76-81. [PMID: 31173949 DOI: 10.1016/j.gaitpost.2019.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Quantification of differences in gait kinematics between young and older adults provides insight on age-related gait changes and can contribute to the investigation of risk of falls. Gait Profile Score (GPS) is an index that indicates gait quality, using kinematic gait data, but so far it has not been used in an elderly population without neurological conditions. RESEARCH QUESTION Is the Gait Profile Score (GPS) an index that shows reliability for use in old adults? Does this index detect changes in gait quality observed by kinematic data between nonfaller, faller and recurrent faller older adults? METHODS Forty-nine women (mean age 72,43 ± 6,44; 27 faller and 22 nonfaller) were included in the study. Intra-session reliability was obtained from the intraclass correlation coefficient (ICC) between the five strides of each session. RESULTS Overall value of GPS shows no difference between nonfaller (6.65 ± 1.59º), faller (6.67 ± 2.05º) and recurrent faller (6.62 ± 0.86º) older adult. In all groups larger values of Gait Variable Scores (GVS) were observed in the hip and knee joints. Intra-session ICC values the GVS and GPS presented high stability, ranging from 0.80 to 0.99. MDC lower values in GPS were observed in the faller (0.39; ICC - 0.97) and recurrent faller (0.69; ICC - 0.90). SIGNIFICANCE Due to the high reliability, GPS has proven to be a valid method to analyze the gait quality of faller and nonfaller older woman. The most sensitive indexes (GPS and GVS) are the gear changes in fallers and recurrent fallers.
Collapse
|
22
|
Bueno GAS, Gervásio FM, Ribeiro DM, Martins AC, Lemos TV, de Menezes RL. Fear of Falling Contributing to Cautious Gait Pattern in Women Exposed to a Fictional Disturbing Factor: A Non-randomized Clinical Trial. Front Neurol 2019; 10:283. [PMID: 30972013 PMCID: PMC6445048 DOI: 10.3389/fneur.2019.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: This study aimed to investigate the gait pattern of elderly women with and without fall-history, with high and low fear of falling, when exposed to a disturbing factor. Materials and Methods: Forty-nine elderly women without cognitive impairment agreed to participate. Participants were divided into four groups, considering the history of falls and fear of falling. Three-dimensional gait analysis was performed to assess gait kinematics before and after exposure to the fictional disturbing factor (psychological and non-motor agent). Results: After being exposed to the perturbation, all showed shorter step length, stride length and slower walking speed. Those without fall-history and with high fear of falling showed greater changes and lower Gait Profile Score. Conclusion: The gait changes shown in the presence of a fear-of-falling causing agent led to a cautious gait pattern in an attempt to increase protection. However, those changes increased fall-risk, boosted by fear of falling. Clinical Trial Registration: www.residentialclinics.gov.br, identifier: RBR-35xhj5.
Collapse
Affiliation(s)
- Guilherme Augusto Santos Bueno
- Postgraduate Program in Health Sciences and Technologies, University of Brasília, Brasília, Brazil.,Movement Laboratory Dr. Cláudio A. Borges, College of Sport, State University of Goiás, Goiânia, Brazil
| | - Flávia Martins Gervásio
- Movement Laboratory Dr. Cláudio A. Borges, College of Sport, State University of Goiás, Goiânia, Brazil
| | - Darlan Martins Ribeiro
- Movement Laboratory Dr. Cláudio A. Borges, College of Sport, State University of Goiás, Goiânia, Brazil.,Dr. Henrique Santillo Rehabilitation and Readaptation Center, Goiânia, Brazil
| | - Anabela Correia Martins
- Department of Physiotherapy, ESTeSC - Coimbra Health School, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Thiago Vilela Lemos
- Movement Laboratory Dr. Cláudio A. Borges, College of Sport, State University of Goiás, Goiânia, Brazil
| | - Ruth Losada de Menezes
- Postgraduate Program in Health Sciences and Technologies, University of Brasília, Brasília, Brazil
| |
Collapse
|
23
|
Acuña SA, Francis CA, Franz JR, Thelen DG. The effects of cognitive load and optical flow on antagonist leg muscle coactivation during walking for young and older adults. J Electromyogr Kinesiol 2018; 44:8-14. [PMID: 30448641 DOI: 10.1016/j.jelekin.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to compare how healthy aging interacts with environments that challenge cognitive load and optical flow to affect antagonist leg muscle coactivation during walking. We measured leg muscle activity in sixteen older adults (70.4 ± 4.2 years) and twelve young adults (23.6 ± 3.9 years) walking on a treadmill at their preferred speed while watching a speed-matched virtual hallway. Cognitive load was challenged using a dual-task to interfere with available attentional resources. Optical flow was challenged using perturbations designed to create a perception of lateral imbalance. We found antagonist coactivation increased with aging, independent of condition. We also found that, compared to unperturbed walking, only in the presence of optical flow perturbations did the older adults increase their antagonist coactivation. Antagonist coactivation in the young adults was not affected by either condition. Our findings provide evidence that antagonist leg muscle coactivation in healthy older adults is more sensitive to walking environments that challenge optical flow than environments that challenge cognitive load. As increased antagonist coactivation may indicate compromised balance, these findings may be relevant in the design of living environments to reduce falls risk.
Collapse
Affiliation(s)
- Samuel A Acuña
- Department of Mechanical Engineering, University of Wisconsin-Madison, United States
| | - Carrie A Francis
- Department of Mathematics & Engineering, University of Northwestern-St. Paul, United States
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, United States
| | - Darryl G Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, United States; Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, United States.
| |
Collapse
|
24
|
Thompson JD, Plummer P, Franz JR. Age and falls history effects on antagonist leg muscle coactivation during walking with balance perturbations. Clin Biomech (Bristol, Avon) 2018; 59:94-100. [PMID: 30216784 PMCID: PMC6282179 DOI: 10.1016/j.clinbiomech.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inspired by a reliance on visual feedback for movement control in older age, optical flow perturbations provide a unique opportunity to study the neuromuscular mechanisms involved in walking balance control, including aging and falls history effects on the response to environmental balance challenges. Specifically, antagonist leg muscle coactivation, which increases with age during walking, is considered a neuromuscular defense against age-associated deficits in balance control. The purpose of this study was to investigate the effects of age and falls history on antagonist leg muscle coactivation during walking with and without optical flow perturbations of different amplitudes. METHODS Eleven young adults [mean (standard deviation) age: 24.8 (4.8) years], eleven older non-fallers [75.3 (5.4) years] and eleven older fallers [age: 78 (7.6) years] participated in this study. Participants completed 2-minute walking trials while watching a speed-matched virtual hallway that, in some conditions, included mediolateral optical flow perturbations designed to elicit the visual perception of imbalance. FINDINGS We first found that lower leg antagonist muscle coactivation during normal walking increased with age, independent of falls history. We also found that older but not young adults increased antagonist leg muscle coactivation in the presence of optical flow perturbations, with more pervasive effects in older adults with a history of falls. INTERPRETATION Our findings allude to a greater susceptibility to optical flow perturbations in older fallers during walking, which points to a higher potential for risk of instability in more complex and dynamic everyday environments. These findings may also have broader impacts related to the design of innovative training paradigms and neuromuscular targets for falls prevention.
Collapse
Affiliation(s)
- Jessica D Thompson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Prudence Plummer
- Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Reimann H, Fettrow T, Thompson ED, Jeka JJ. Neural Control of Balance During Walking. Front Physiol 2018; 9:1271. [PMID: 30271354 PMCID: PMC6146212 DOI: 10.3389/fphys.2018.01271] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 11/23/2022] Open
Abstract
Neural control of standing balance has been extensively studied. However, most falls occur during walking rather than standing, and findings from standing balance research do not necessarily carry over to walking. This is primarily due to the constraints of the gait cycle: Body configuration changes dramatically over the gait cycle, necessitating different responses as this configuration changes. Notably, certain responses can only be initiated at specific points in the gait cycle, leading to onset times ranging from 350 to 600 ms, much longer than what is observed during standing (50-200 ms). Here, we investigated the neural control of upright balance during walking. Specifically, how the brain transforms sensory information related to upright balance into corrective motor responses. We used visual disturbances of 20 healthy young subjects walking in a virtual reality cave to induce the perception of a fall to the side and analyzed the muscular responses, changes in ground reaction forces and body kinematics. Our results showed changes in swing leg foot placement and stance leg ankle roll that accelerate the body in the direction opposite of the visually induced fall stimulus, consistent with previous results. Surprisingly, ankle musculature activity changed rapidly in response to the stimulus, suggesting the presence of a direct reflexive pathway from the visual system to the spinal cord, similar to the vestibulospinal pathway. We also observed systematic modulation of the ankle push-off, indicating the discovery of a previously unobserved balance mechanism. Such modulation has implications not only for balance but plays a role in modulation of step width and length as well as cadence. These results indicated a temporally-coordinated series of balance responses over the gait cycle that insures flexible control of upright balance during walking.
Collapse
Affiliation(s)
- Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Kinesiology, Temple University, Philadelphia, PA, United States
| | - Tyler Fettrow
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Kinesiology, Temple University, Philadelphia, PA, United States
| | | | - John J. Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Kinesiology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Allen JL, Franz JR. The motor repertoire of older adult fallers may constrain their response to balance perturbations. J Neurophysiol 2018; 120:2368-2378. [PMID: 30133380 DOI: 10.1152/jn.00302.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Older adults are at a high risk of falls, and most falls occur during locomotor activities like walking. This study aimed to improve our understanding of changes in neuromuscular control associated with increased risk of falls in older adults in the presence of dynamic balance challenges during walking. Motor module (also known as muscle synergy) analyses identified changes in the neuromuscular recruitment of leg muscles during walking with and without perturbations designed to elicit the visual perception of lateral instability. During normal walking we found that a history of falls (but not age) was associated with reduced motor module complexity and that age (but not a history of falls) was associated with increased step-to-step variability of module recruitment timing. Furthermore, motor module complexity was unaltered in the presence of optical flow perturbations. The specific effects of a history of falls on leg muscle recruitment included an absence and/or inability to independently recruit motor modules normally recruited to perform biomechanical functions important for walking balance control. These results suggest that fallers do not recruit the appropriate motor modules necessary for well-coordinated walking balance control even in the presence of perturbations. The identified changes in the modular control of walking balance in older fallers may either represent a neural deficit that leads to poor balance control or a prior history of falls that results in a compensatory motor adaptation. In either case, our study provides initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking. NEW & NOTEWORTHY This is the first study to demonstrate a reduced motor repertoire during walking in older adults with a history of falls but without any overt neurological deficits. Furthermore, using virtual reality during walking to elicit the visual perception of lateral instability, we provide initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking.
Collapse
Affiliation(s)
- Jessica L Allen
- Department of Chemical and Biomedical Engineering, West Virginia University , Morgantown, West Virginia
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Chapel Hill, North Carolina
| |
Collapse
|
27
|
Does local dynamic stability during unperturbed walking predict the response to balance perturbations? An examination across age and falls history. Gait Posture 2018; 62. [PMID: 29529517 PMCID: PMC6266865 DOI: 10.1016/j.gaitpost.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Older adults are at an exceptionally high risk of falls, and most falls occur during locomotor activities such as walking. Reduced local dynamic stability in old age is often interpreted to suggest a lessened capacity to respond to more significant balance challenges encountered during walking and future falls risk. However, it remains unclear whether local dynamic stability during normal, unperturbed walking predicts the response to larger external balance disturbances. RESEARCH QUESTION We tested the hypothesis that larger values of local dynamic instability during unperturbed walking would positively correlate with larger changes thereof due to optical flow balance perturbations. METHODS We used trunk kinematics collected in subjects across a spectrum of walking balance integrity - young adults, older non-fallers, and older fallers - during walking with and without mediolateral optical flow perturbations of four different amplitudes. RESULTS We first found evidence that optical flow perturbations of sufficient amplitude appear capable of revealing independent effects of aging and falls history that are not otherwise apparent during normal, unperturbed walking. We also reject our primary hypothesis; a significant negative correlation only in young adults indicated that individuals with more local dynamic instability during normal, unperturbed walking exhibited smaller responses to optical flow perturbations. In contrast, most prominently in older fallers, the response to optical flow perturbations appeared independent of their baseline level of dynamic instability. SIGNIFICANCE We propose that predicting the response to balance perturbations in older fallers, at least that measured using local dynamic stability, likely requires measuring that response directly.
Collapse
|